IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-62240-9.html
   My bibliography  Save this article

Nutrient diffusion-inspired catalysts with self-reinforced concentration gradient for sustainable electroreduction of dilute CO2

Author

Listed:
  • Jialei Chen

    (Nankai University)

  • Tiantian Lu

    (Nankai University)

  • Xuelong Liao

    (Nankai University)

  • Shan Chen

    (Nankai University)

  • Youzeng Li

    (Nankai University)

  • Yue Wang

    (Nankai University)

  • Runyu Lv

    (Nankai University)

  • Wenyue Cui

    (Nankai University)

  • Wenlong Lan

    (Nankai University)

  • Wei Wang

    (Nankai University)

  • Lixin Cao

    (Nankai University)

  • Zhuo Chen

    (Nankai University)

  • Zhuang Zhao

    (Nankai University)

  • Jinhan Li

    (Nankai University)

  • Wei Shi

    (Nankai University)

  • Sheng Zhang

    (Tianjin University
    Haihe Laboratory of Sustainable Chemical Transformations)

  • Huan Wang

    (Nankai University
    Haihe Laboratory of Sustainable Chemical Transformations
    Beijing National Laboratory for Molecular Sciences)

Abstract

The electrocatalysis of flue gas into CO in membrane electrode assembly (MEA) provides a sustainable route for realizing practical CO2 electrolysis technology but suffers from restricted CO2 mass transport due to thick gas boundary layer (GBL) and weak concentration gradient. Inspired by nutrient diffusion mechanism in plant, we introduce the concept of self-reinforced CO2 concentration gradient, which is realized via porous carbon nanosheets (PC) as soil for enriching CO2 and single-atomic Ni-doped carbon nanotubes (Ni-CNTs) as rhizome for electro-catalyzing CO2. A combined experimental and simulation study reveals optimal length of Ni-CNTs on PC reduces the GBL thickness and spontaneously enhances CO2 concentration gradient, synergistically breaking the limitation of CO2 transport. Consequently, the CO Faradaic efficiency attains >90% with varying CO2 concentration of 4-15 vol. % CO2 in MEA. Further through incorporation of an O2-adsorption packed column before MEA, we realize the stable and selective conversion of O2-containing flue gas into CO.

Suggested Citation

  • Jialei Chen & Tiantian Lu & Xuelong Liao & Shan Chen & Youzeng Li & Yue Wang & Runyu Lv & Wenyue Cui & Wenlong Lan & Wei Wang & Lixin Cao & Zhuo Chen & Zhuang Zhao & Jinhan Li & Wei Shi & Sheng Zhang , 2025. "Nutrient diffusion-inspired catalysts with self-reinforced concentration gradient for sustainable electroreduction of dilute CO2," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62240-9
    DOI: 10.1038/s41467-025-62240-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-62240-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-62240-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wensheng Fang & Wei Guo & Ruihu Lu & Ya Yan & Xiaokang Liu & Dan Wu & Fu Min Li & Yansong Zhou & Chaohui He & Chenfeng Xia & Huiting Niu & Sicong Wang & Youwen Liu & Yu Mao & Chengyi Zhang & Bo You & , 2024. "Publisher Correction: Durable CO2 conversion in the proton-exchange membrane system," Nature, Nature, vol. 627(8005), pages 13-13, March.
    2. Panagiotis Papangelakis & Rui Kai Miao & Ruihu Lu & Hanqi Liu & Xi Wang & Adnan Ozden & Shijie Liu & Ning Sun & Colin P. O’Brien & Yongfeng Hu & Mohsen Shakouri & Qunfeng Xiao & Mengsha Li & Behrooz K, 2024. "Improving the SO2 tolerance of CO2 reduction electrocatalysts using a polymer/catalyst/ionomer heterojunction design," Nature Energy, Nature, vol. 9(8), pages 1011-1020, August.
    3. Tianyang Lei & Daoping Wang & Xiang Yu & Shijun Ma & Weichen Zhao & Can Cui & Jing Meng & Shu Tao & Dabo Guan, 2023. "Global iron and steel plant CO2 emissions and carbon-neutrality pathways," Nature, Nature, vol. 622(7983), pages 514-520, October.
    4. Hengpan Yang & Qing Lin & Chao Zhang & Xinyao Yu & Zhong Cheng & Guodong Li & Qi Hu & Xiangzhong Ren & Qianling Zhang & Jianhong Liu & Chuanxin He, 2020. "Carbon dioxide electroreduction on single-atom nickel decorated carbon membranes with industry compatible current densities," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    5. Xinyi Ren & Jian Zhao & Xuning Li & Junming Shao & Binbin Pan & Aude Salamé & Etienne Boutin & Thomas Groizard & Shifu Wang & Jie Ding & Xiong Zhang & Wen-Yang Huang & Wen-Jing Zeng & Chengyu Liu & Ya, 2023. "In-situ spectroscopic probe of the intrinsic structure feature of single-atom center in electrochemical CO/CO2 reduction to methanol," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Yan Lin & Tuo Wang & Lili Zhang & Gong Zhang & Lulu Li & Qingfeng Chang & Zifan Pang & Hui Gao & Kai Huang & Peng Zhang & Zhi-Jian Zhao & Chunlei Pei & Jinlong Gong, 2023. "Tunable CO2 electroreduction to ethanol and ethylene with controllable interfacial wettability," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    7. Wensheng Fang & Wei Guo & Ruihu Lu & Ya Yan & Xiaokang Liu & Dan Wu & Fu Min Li & Yansong Zhou & Chaohui He & Chenfeng Xia & Huiting Niu & Sicong Wang & Youwen Liu & Yu Mao & Chengyi Zhang & Bo You & , 2024. "Durable CO2 conversion in the proton-exchange membrane system," Nature, Nature, vol. 626(7997), pages 86-91, February.
    8. Run Shi & Jiahao Guo & Xuerui Zhang & Geoffrey I. N. Waterhouse & Zhaojun Han & Yunxuan Zhao & Lu Shang & Chao Zhou & Lei Jiang & Tierui Zhang, 2020. "Efficient wettability-controlled electroreduction of CO2 to CO at Au/C interfaces," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hao Dong & Ran Luo & Gong Zhang & Lulu Li & Chaoxi Wang & Guodong Sun & Hongyi Wang & Jiachang Liu & Tuo Wang & Zhi-Jian Zhao & Peng Zhang & Jinlong Gong, 2025. "Electrochemical epoxidation enhanced by C2H4 activation and hydroxyl generation at the Ag/SnO2 interface," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    2. Lili Zhang & Ning Zhang & Huishan Shang & Zhiyi Sun & Zihao Wei & Jingtao Wang & Yuanting Lei & Xiaochen Wang & Dan Wang & Yafei Zhao & Zhongti Sun & Fang Zhang & Xu Xiang & Bing Zhang & Wenxing Chen, 2024. "High-density asymmetric iron dual-atom sites for efficient and stable electrochemical water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Yangbo Ma & Liang Guo & Liang Chang & Weihua Guo & Tao Zhou & Fengkun Hao & Wenda Su & Jingwen Zhou & Guozhi Wang & Mingzheng Shao & Jihan Yu & Jinwen Yin & Yunhao Wang & Fu Liu & An Zhang & Kun Qian , 2025. "Unconventional phase metal heteronanostructures with tunable exposed interface for efficient tandem nitrate electroreduction to ammonia," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    4. Jieyang Li & Huanlei Zhang & Changhao Luo & Dongbo Cheng & Wanping Xu & Meng Lin, 2025. "Non-isothermal CO2 electrolysis enables simultaneous enhanced electrochemical and anti-precipitation performance," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    5. Qiyou Wang & Tao Luo & Xueying Cao & Yujie Gong & Yuxiang Liu & Yusen Xiao & Hongmei Li & Franz Gröbmeyer & Ying-Rui Lu & Ting-Shan Chan & Chao Ma & Kang Liu & Junwei Fu & Shiguo Zhang & Changxu Liu &, 2025. "Lanthanide single-atom catalysts for efficient CO2-to-CO electroreduction," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    6. Zhibo Yao & Hao Cheng & Yifei Xu & Xinyu Zhan & Song Hong & Xinyi Tan & Tai-Sing Wu & Pei Xiong & Yun-Liang Soo & Molly Meng-Jung Li & Leiduan Hao & Liang Xu & Alex W. Robertson & Bingjun Xu & Ming Ya, 2024. "Hydrogen radical-boosted electrocatalytic CO2 reduction using Ni-partnered heteroatomic pairs," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    7. Huiying Deng & Tingting Liu & Wenshan Zhao & Jundong Wang & Yuesheng Zhang & Shuzhen Zhang & Yu Yang & Chao Yang & Wenzhi Teng & Zhuo Chen & Gengfeng Zheng & Fengwang Li & Yaqiong Su & Jingshu Hui & Y, 2024. "Substituent tuning of Cu coordination polymers enables carbon-efficient CO2 electroreduction to multi-carbon products," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Bo Peng & Hao She & Zihao Wei & Zhiyi Sun & Ziwei Deng & Zhongti Sun & Wenxing Chen, 2025. "Sulfur-doping tunes p-d orbital coupling over asymmetric Zn-Sn dual-atom for boosting CO2 electroreduction to formate," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    9. Xiaotong Li & Kainan Gao & Mingliang Qu & Nanhui Li & Xiangzhou Lv & Xiuju Wu & Qingyang Lin & Hao Bin Wu, 2025. "Membrane-free CO2 electrolyzer design for economically efficient formic acid electro-synthesis," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    10. Zhongjie Cai & Hongwei Liu & Jiajun Dai & Bao Li & Liming Yang & Jingyu Wang & Huaiyong Zhu, 2025. "Sunlight-driven simultaneous CO2 reduction and water oxidation using indium-organic framework heterostructures," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    11. Wang, Yang & Gong, Li & Yue, Pengtao & Ma, Long & Li, Jun & Zhang, Liang & Zhu, Xun & Fu, Qian & Liao, Qiang, 2025. "CO2 capture and electrochemical upgrade of MEA-based solution: Life cycle assessment and techno-economic analysis," Applied Energy, Elsevier, vol. 384(C).
    12. Zewei Wu & Yi Liu & Sai Chen & Jiamin Zheng & Weixing Zhang & Zhi-Jian Zhao & Xiao Liu & Jinlong Gong, 2025. "Ethane dehydrogenation over CaCO3-mediated tandem catalysts," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    13. Feng-Ze Tian & Wen-Jui Chang & Pei-Jung Liang & Yi-An Lai & Chia-Shuo Hsu & Sheng-Chih Lin & Yu-Hsin Chen & You-Chiuan Chu & Shih-Wen Huang & Hui-Lung Chen & Hao Ming Chen, 2025. "Charge redistribution dynamics in chalcogenide-stabilized cuprous electrocatalysts unleash ampere-scale partial current toward formate production," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    14. Weisong Liu & Kuncheng Zhang & Jiang Liu & Yuanming Wang & Meng Zhang & Huijuan Cui & Junsong Sun & Lingling Zhang, 2024. "Bioelectrocatalytic carbon dioxide reduction by an engineered formate dehydrogenase from Thermoanaerobacter kivui," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    15. Jingyi Chen & Mohammed Aliasgar & Yilin Zhao & Fernando Buendia Zamudio & Lei Fan & Junmei Chen & Jiayi Chen & Xiaosong Gu & Jiajia Gao & Sergey M. Kozlov & Lei Wang, 2025. "Unlocking cathodic potential dependent Pd deactivation for energy efficient CO2 electroreduction to formate," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    16. Zhitong Wang & Dongyu Liu & Chenfeng Xia & Xiaodong Shi & Yansong Zhou & Qiuwen Liu & Jiangtao Huang & Haiyan Wu & Deyu Zhu & Shuyu Zhang & Jing Li & Peilin Deng & Andrey S. Vasenko & Bao Yu Xia & Xin, 2025. "Tip carbon encapsulation customizes cationic enrichment and valence stabilization for low K+ acidic CO2 electroreduction," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    17. Wenjie Xue & Hui Jiang & Jinlong Liu & Xinqing Chen & Conghui Tang & Bao Yu Xia & Bo You, 2025. "Bipolar ethylene electrosynthesis from CO2 and biowaste acid with total faradaic efficiency over 118%," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    18. Luming Zhang & Huan Ma & Yongfang Sun & Yilin Zhao & Huiying Deng & Yuhang Wang & Fei Wang & Xiao-Dong Wen & Mingchuan Luo, 2025. "Spontaneous water dissociation on intermetallic electride LaCu0.67Si1.33 enhances electrochemical methanization of CO2," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    19. Yihan Wang & Zongguo Wen & Mao Xu & Christian Doh Dinga, 2025. "Long-term transformation in China’s steel sector for carbon capture and storage technology deployment," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    20. Jie Yin & Jing Jin & Zhouyang Yin & Liu Zhu & Xin Du & Yong Peng & Pinxian Xi & Chun-Hua Yan & Shouheng Sun, 2023. "The built-in electric field across FeN/Fe3N interface for efficient electrochemical reduction of CO2 to CO," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62240-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.