IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-63313-5.html
   My bibliography  Save this article

Revisiting Pt foil catalysts for formamide electrosynthesis achieved at industrial-level current densities

Author

Listed:
  • Xinzhong Wang

    (Hung Hom)

  • Yiwen Su

    (Hung Hom)

  • Jiashu Chen

    (Hung Hom)

  • Edward Hengzhou Yan

    (Hong Kong Polytechnic University)

  • Qing Xia

    (Hung Hom)

  • Jie Wu

    (Hung Hom)

  • Shanhe Gong

    (Hung Hom)

  • Mingcong Tang

    (Hung Hom)

  • Wai Sze Yip

    (Hong Kong Polytechnic University)

  • Yongbiao Mu

    (Southern University of Science and Technology)

  • Yuyang Yi

    (Hong Kong Polytechnic University)

  • Jinjin Wu

    (Hung Hom)

  • Fujing Xu

    (Hung Hom)

  • Xianzhong Yang

    (University of Shanghai for Science and Technology)

  • Xiao Zhang

    (Hung Hom)

  • Shixue Dou

    (University of Shanghai for Science and Technology
    Squires Way)

  • Jingyu Sun

    (Soochow University)

  • Guangping Zheng

    (Hung Hom)

Abstract

Current electrosynthesis catalysts typically rely on nanomaterial-based engineering with multi-dimensional structural modifications. However, such approaches may not always be necessary, especially for underexplored industrial electrochemical conversions. Here, we demonstrate that commercial platinum (Pt) foil catalysts excel in the electrochemical co-oxidation of waste polyethylene terephthalate (PET)-derived ethylene glycol (EG) and ammonia (NH3) into formamide (HCONH2), a process traditionally reliant on energy-intensive methods. This approach achieves a high Faradaic efficiency (FE) of 55.87 ± 1.4% and a productivity of 1003.63 ± 23.72 µmol cm−2 h−1 at industrially relevant current densities without any degradation for durable operation (more than 500 h and 300 h for H-cell and membrane electrode assembly (MEA) reactor, respectively). In situ spectroscopy, supported by theoretical calculations, suggests that *CH2O and *NH2 are likely key intermediates. Furthermore, the product sustainability index (ProdSI) and techno-economic analysis (TEA) underscore the cost-effectiveness and sustainability of noble Pt foil in this scenario, challenging the conventional reliance on complex electrocatalysts. This work provides distinctive insights into catalyst screening and demonstrates a viable strategy for upcycling waste plastics.

Suggested Citation

  • Xinzhong Wang & Yiwen Su & Jiashu Chen & Edward Hengzhou Yan & Qing Xia & Jie Wu & Shanhe Gong & Mingcong Tang & Wai Sze Yip & Yongbiao Mu & Yuyang Yi & Jinjin Wu & Fujing Xu & Xianzhong Yang & Xiao Z, 2025. "Revisiting Pt foil catalysts for formamide electrosynthesis achieved at industrial-level current densities," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63313-5
    DOI: 10.1038/s41467-025-63313-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-63313-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-63313-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yi-Fan Huang & Patricia J. Kooyman & Marc T. M. Koper, 2016. "Intermediate stages of electrochemical oxidation of single-crystalline platinum revealed by in situ Raman spectroscopy," Nature Communications, Nature, vol. 7(1), pages 1-7, November.
    2. Nannan Meng & Jiang Shao & Hongjiao Li & Yuting Wang & Xiaoli Fu & Cuibo Liu & Yifu Yu & Bin Zhang, 2022. "Electrosynthesis of formamide from methanol and ammonia under ambient conditions," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Jiao Lan & Zengxi Wei & Ying-Rui Lu & DeChao Chen & Shuangliang Zhao & Ting-Shan Chan & Yongwen Tan, 2023. "Efficient electrosynthesis of formamide from carbon monoxide and nitrite on a Ru-dispersed Cu nanocluster catalyst," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Lei Wan & Maobin Pang & Junfa Le & Ziang Xu & Hangyu Zhou & Qin Xu & Baoguo Wang, 2022. "Oriented intergrowth of the catalyst layer in membrane electrode assembly for alkaline water electrolysis," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Hua Zhou & Yue Ren & Zhenhua Li & Ming Xu & Ye Wang & Ruixiang Ge & Xianggui Kong & Lirong Zheng & Haohong Duan, 2021. "Electrocatalytic upcycling of polyethylene terephthalate to commodity chemicals and H2 fuel," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    6. Yang Li & Shisheng Zheng & Hao Liu & Qi Xiong & Haocong Yi & Haibin Yang & Zongwei Mei & Qinghe Zhao & Zu-Wei Yin & Ming Huang & Yuan Lin & Weihong Lai & Shi-Xue Dou & Feng Pan & Shunning Li, 2024. "Sequential co-reduction of nitrate and carbon dioxide enables selective urea electrosynthesis," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Yanmei Shi & Yan Ji & Jun Long & Yu Liang & Yang Liu & Yifu Yu & Jianping Xiao & Bin Zhang, 2020. "Unveiling hydrocerussite as an electrochemically stable active phase for efficient carbon dioxide electroreduction to formate," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    8. Peng Zhu & Zhen-Yu Wu & Ahmad Elgazzar & Changxin Dong & Tae-Ung Wi & Feng-Yang Chen & Yang Xia & Yuge Feng & Mohsen Shakouri & Jung Yoon (Timothy) Kim & Zhiwei Fang & T. Alan Hatton & Haotian Wang, 2023. "Continuous carbon capture in an electrochemical solid-electrolyte reactor," Nature, Nature, vol. 618(7967), pages 959-966, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenjie Xue & Hui Jiang & Jinlong Liu & Xinqing Chen & Conghui Tang & Bao Yu Xia & Bo You, 2025. "Bipolar ethylene electrosynthesis from CO2 and biowaste acid with total faradaic efficiency over 118%," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    2. Nannan Meng & Jiang Shao & Hongjiao Li & Yuting Wang & Xiaoli Fu & Cuibo Liu & Yifu Yu & Bin Zhang, 2022. "Electrosynthesis of formamide from methanol and ammonia under ambient conditions," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Xin Li & Weiping Yang & Junping Yue & Jieyuan Li & Shujie Shen & Ruimin Chen & Jielin Wang & Huimin Dan & Dagang Yu & Fan Dong, 2025. "Photocatalytic C-N coupling from stable and transient intermediates for gram-scale acetamide synthesis," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    4. Gui Zhao & Jiayi Lin & Mengying Lu & Lina Li & Pengtao Xu & Xi Liu & Liwei Chen, 2024. "Potential cycling boosts the electrochemical conversion of polyethylene terephthalate-derived alcohol into valuable chemicals," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Yuantao Peng & Jie Yang & Chenqiang Deng & Jin Deng & Li Shen & Yao Fu, 2023. "Acetolysis of waste polyethylene terephthalate for upcycling and life-cycle assessment study," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Minghao Zhang & Yunkai Yu & Buxing Han & Qingqing Mei, 2025. "A general esterolysis strategy for upcycling waste polyesters into high-value esters," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    7. Yuxuan Zhang & Hasan Al-Mahayni & Pedro M. Aguiar & Daniel Chartrand & Morgan McKee & Mehdi Shamekhi & Ali Seifitokaldani & Nikolay Kornienko, 2025. "Oxy-reductive C-N bond formation via pulsed electrolysis," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    8. Yaowei Huang & Da Xu & Shuai Deng & Meng Lin, 2024. "A hybrid electro-thermochemical device for methane production from the air," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Kumar, Manish & Bolan, Shiv & Padhye, Lokesh P. & Konarova, Muxina & Foong, Shin Ying & Lam, Su Shiung & Wagland, Stuart & Cao, Runzi & Li, Yang & Batalha, Nuno & Ahmed, Mohamed & Pandey, Ashok & Sidd, 2023. "Retrieving back plastic wastes for conversion to value added petrochemicals: opportunities, challenges and outlooks," Applied Energy, Elsevier, vol. 345(C).
    10. Ouwen Peng & Qikun Hu & Mengtian Jin & Mengyao Su & Jia Liu & Bo Li & Shibo Xi & Chun Cheng & Kian Ping Loh, 2025. "Hydroxyl and nitrate co-upgrading to oxime via anode-cathode cascade electrolyzer," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    11. Qiqi Mao & Xu Mu & Wenxin Wang & Kai Deng & Hongjie Yu & Ziqiang Wang & You Xu & Liang Wang & Hongjing Wang, 2023. "Atomically dispersed Cu coordinated Rh metallene arrays for simultaneously electrochemical aniline synthesis and biomass upgrading," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    12. Yingchun He & Dong-Dong Ma & Ke Ma & Xiaofang Li & Lili Han & Xin-Tao Wu & Qi-Long Zhu, 2025. "Electrocatalytic N–C–N coupling over a hierarchically ordered open single-atom superstructure toward organonitrogen synthesis," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    13. Jun Qi & Yadong Du & Qi Yang & Na Jiang & Jiachun Li & Yi Ma & Yangjun Ma & Xin Zhao & Jieshan Qiu, 2023. "Energy-saving and product-oriented hydrogen peroxide electrosynthesis enabled by electrochemistry pairing and product engineering," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    14. Shilei Wei & Hang Hua & Yuxuan Zhao & Jingshan Luo, 2025. "Porous membranes enable selective and stable zero-gap acidic CO2 electrolysers," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    15. Hua Zhou & Yue Ren & Bingxin Yao & Zhenhua Li & Ming Xu & Lina Ma & Xianggui Kong & Lirong Zheng & Mingfei Shao & Haohong Duan, 2023. "Scalable electrosynthesis of commodity chemicals from biomass by suppressing non-Faradaic transformations," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    16. Han Li & Leitao Xu & Shuowen Bo & Yujie Wang & Han Xu & Chen Chen & Ruping Miao & Dawei Chen & Kefan Zhang & Qinghua Liu & Jingjun Shen & Huaiyu Shao & Jianfeng Jia & Shuangyin Wang, 2024. "Ligand engineering towards electrocatalytic urea synthesis on a molecular catalyst," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    17. Nannan Meng & Zhitan Wu & Yanmei Huang & Jie Zhang & Maoxin Chen & Haibin Ma & Hongjiao Li & Shibo Xi & Ming Lin & Wenya Wu & Shuhe Han & Yifu Yu & Quan-Hong Yang & Bin Zhang & Kian Ping Loh, 2024. "High yield electrosynthesis of oxygenates from CO using a relay Cu-Ag co-catalyst system," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    18. Xing Li & Charles B. Musgrave & Andong Liu & Junyang Meng & Jihan Zhang & William A. Goddard & Yayuan Liu, 2025. "Electrifying amine carbon capture with robust redox-tunable acids," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    19. Zheng-Jie Chen & Jiuyi Dong & Jiajing Wu & Qiting Shao & Na Luo & Minwei Xu & Yuanmiao Sun & Yongbing Tang & Jing Peng & Hui-Ming Cheng, 2023. "Acidic enol electrooxidation-coupled hydrogen production with ampere-level current density," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    20. Xu Wu & Yang Chen & Bing Tang & Qiong Yan & Deyu Wu & Heng Zhou & Hao Wang & Heng Zhang & Daoping He & Hui Li & Jianrong Zeng & Lanlu Lu & Song Yang & Tianyi Ma, 2025. "CeOx-Integrated dual site enhanced urea electrosynthesis from nitrate and carbon dioxide," Nature Communications, Nature, vol. 16(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63313-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.