IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-64243-y.html
   My bibliography  Save this article

Temperature-driven mechanistic transition in propylene oxidation over Pt/CeO2 ensemble catalysts

Author

Listed:
  • Zihao Li

    (Shanghai Jiao Tong University
    CNPC Company)

  • Xingyan Chen

    (Shanghai Jiao Tong University)

  • Yao Lv

    (East China University of Science and Technology)

  • Sheng Dai

    (East China University of Science and Technology)

  • Huazhen Chang

    (Renmin University of China)

  • Zhenguo Li

    (China Automotive Technology & Research Center Co. Ltd.)

  • Kailong Ye

    (University of California)

  • Fudong Liu

    (University of California)

  • Lei Ma

    (Shanghai Jiao Tong University)

  • Naiqiang Yan

    (Shanghai Jiao Tong University)

Abstract

Pt/CeO2 ensemble catalysts are promising for propylene (C3H6) oxidation in vehicle exhaust, yet identifying the intrinsic active sites and understanding how the metal-support interface evolves at varying reaction temperatures remains contentious. Herein, we demonstrate that H2-activated Pt/CeO2 ensemble catalysts feature metallic Pt ensembles as intrinsic active sites, lowering the 50% conversion temperature by 120 °C after hydrogen activation. Various operando characterization techniques reveal an approximately 170 °C threshold temperature for the dynamic change of the reaction models. Meanwhile, kinetics and theoretical analysis illustrates that oxygen-facilitated dehydrogenation of sp3 C-H bonds is the rate-determining step. At low temperatures, both C3H6 and O2 adsorb and activate on metallic Pt, without CeO2 involvement. Once the temperature exceeds threshold, C3H6 fully covers Pt sites, while O2 activates over Pt-O-Ce interfaces and participates in dehydrogenation. This study highlights the dynamic nature of oxygen activation, leading to distinct reaction temperature regimes during C3H6 oxidation.

Suggested Citation

  • Zihao Li & Xingyan Chen & Yao Lv & Sheng Dai & Huazhen Chang & Zhenguo Li & Kailong Ye & Fudong Liu & Lei Ma & Naiqiang Yan, 2025. "Temperature-driven mechanistic transition in propylene oxidation over Pt/CeO2 ensemble catalysts," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-64243-y
    DOI: 10.1038/s41467-025-64243-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-64243-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-64243-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yuanyuan Li & Matthew Kottwitz & Joshua L. Vincent & Michael J. Enright & Zongyuan Liu & Lihua Zhang & Jiahao Huang & Sanjaya D. Senanayake & Wei-Chang D. Yang & Peter A. Crozier & Ralph G. Nuzzo & An, 2021. "Dynamic structure of active sites in ceria-supported Pt catalysts for the water gas shift reaction," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    2. Zailei Zhang & Yihan Zhu & Hiroyuki Asakura & Bin Zhang & Jiaguang Zhang & Maoxiang Zhou & Yu Han & Tsunehiro Tanaka & Aiqin Wang & Tao Zhang & Ning Yan, 2017. "Thermally stable single atom Pt/m-Al2O3 for selective hydrogenation and CO oxidation," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    3. Hui Wang & Jin-Xun Liu & Lawrence F. Allard & Sungsik Lee & Jilei Liu & Hang Li & Jianqiang Wang & Jun Wang & Se H. Oh & Wei Li & Maria Flytzani-Stephanopoulos & Meiqing Shen & Bryan R. Goldsmith & Mi, 2019. "Surpassing the single-atom catalytic activity limit through paired Pt-O-Pt ensemble built from isolated Pt1 atoms," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tengfei Zhang & Peng Zheng & Jiajian Gao & Xiaolong Liu & Yongjun Ji & Junbo Tian & Yang Zou & Zhiyi Sun & Qiao Hu & Guokang Chen & Wenxing Chen & Xi Liu & Ziyi Zhong & Guangwen Xu & Tingyu Zhu & Fabi, 2024. "Simultaneously activating molecular oxygen and surface lattice oxygen on Pt/TiO2 for low-temperature CO oxidation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Eugenio Meloni & Marco Martino & Giuseppina Iervolino & Concetta Ruocco & Simona Renda & Giovanni Festa & Vincenzo Palma, 2022. "The Route from Green H 2 Production through Bioethanol Reforming to CO 2 Catalytic Conversion: A Review," Energies, MDPI, vol. 15(7), pages 1-36, March.
    3. Zhongzhe Wei & Zijiang Zhao & Chenglong Qiu & Songtao Huang & Zihao Yao & Mingxuan Wang & Yi Chen & Yue Lin & Xing Zhong & Xiaonian Li & Jianguo Wang, 2023. "Tripodal Pd metallenes mediated by Nb2C MXenes for boosting alkynes semihydrogenation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Feng Bi & Qingjie Meng & Yili Zhang & Hao Chen & Boqiong Jiang & Hanfeng Lu & Qinghua Liu & Hongjun Zhang & Zhongbiao Wu & Xiaole Weng, 2025. "Engineering triple O-Ti-O vacancy associates for efficient water-activation catalysis," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    5. Zihao Zhang & Jinshu Tian & Yubing Lu & Shize Yang & Dong Jiang & Weixin Huang & Yixiao Li & Jiyun Hong & Adam S. Hoffman & Simon R. Bare & Mark H. Engelhard & Abhaya K. Datye & Yong Wang, 2023. "Memory-dictated dynamics of single-atom Pt on CeO2 for CO oxidation," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Dongpeng Zhang & Yanxiao Li & Pengfei Wang & Jinyong Qu & Yi Li & Sihui Zhan, 2023. "Dynamic active-site induced by host-guest interactions boost the Fenton-like reaction for organic wastewater treatment," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Yufei Zhao & Priyank V. Kumar & Xin Tan & Xinxin Lu & Xiaofeng Zhu & Junjie Jiang & Jian Pan & Shibo Xi & Hui Ying Yang & Zhipeng Ma & Tao Wan & Dewei Chu & Wenjie Jiang & Sean C. Smith & Rose Amal & , 2022. "Modulating Pt-O-Pt atomic clusters with isolated cobalt atoms for enhanced hydrogen evolution catalysis," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    8. Xiansheng Li & Xing Wang & Arik Beck & Mikalai Artsiusheuski & Qianyu Liu & Qiang Liu & Henrik Eliasson & Frank Krumeich & Ulrich Aschauer & Giovanni Pizzi & Rolf Erni & Jeroen A. Bokhoven & Luca Arti, 2025. "Quantifying electronic and geometric effects on the activity of platinum catalysts for water-gas shift," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    9. Khandelwal, Akshat & Maarisetty, Dileep & Baral, Saroj Sundar, 2022. "Fundamentals and application of single-atom photocatalyst in sustainable energy and environmental applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    10. Feixiang Zhang & Panshuo Wang & Yandi Zhu & Jinlei Shi & Rui Pang & Xiaoyan Ren & Shunfang Li, 2025. "Highly enhanced room-temperature single-atom catalysis of two-dimensional organic-inorganic multiferroics Cr(half-fluoropyrazine)2 for CO oxidation," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    11. Xiaowei Shi & Chao Dai & Xin Wang & Jiayue Hu & Junying Zhang & Lingxia Zheng & Liang Mao & Huajun Zheng & Mingshan Zhu, 2022. "Protruding Pt single-sites on hexagonal ZnIn2S4 to accelerate photocatalytic hydrogen evolution," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    12. Luning Chen & Pragya Verma & Kaipeng Hou & Zhiyuan Qi & Shuchen Zhang & Yi-Sheng Liu & Jinghua Guo & Vitalie Stavila & Mark D. Allendorf & Lansun Zheng & Miquel Salmeron & David Prendergast & Gabor A., 2022. "Reversible dehydrogenation and rehydrogenation of cyclohexane and methylcyclohexane by single-site platinum catalyst," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    13. Ruiying Li & Jingyuan Shang & Fei Wang & Qing Lu & Hao Yan & Yongxiao Tuo & Yibin Liu & Xiang Feng & Xiaobo Chen & De Chen & Chaohe Yang, 2025. "Quantification and optimization of platinum–molybdenum carbide interfacial sites to enhance low-temperature water-gas shift reaction," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    14. Hao Meng & Yusen Yang & Tianyao Shen & Wei Liu & Lei Wang & Pan Yin & Zhen Ren & Yiming Niu & Bingsen Zhang & Lirong Zheng & Hong Yan & Jian Zhang & Feng-Shou Xiao & Min Wei & Xue Duan, 2023. "A strong bimetal-support interaction in ethanol steam reforming," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    15. Yang Si & Yueyue Jiao & Maolin Wang & Shengling Xiang & Jiangyong Diao & Xiaowen Chen & Jiawei Chen & Yue Wang & Dequan Xiao & Xiaodong Wen & Ning Wang & Ding Ma & Hongyang Liu, 2024. "Fully exposed Pt clusters for efficient catalysis of multi-step hydrogenation reactions," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    16. Hao-Xin Liu & Jin-Ying Li & Xuetao Qin & Chao Ma & Wei-Wei Wang & Kai Xu & Han Yan & Dequan Xiao & Chun-Jiang Jia & Qiang Fu & Ding Ma, 2022. "Ptn–Ov synergistic sites on MoOx/γ-Mo2N heterostructure for low-temperature reverse water–gas shift reaction," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    17. Sai Zhang & Yuxuan Liu & Mingkai Zhang & Yuanyuan Ma & Jun Hu & Yongquan Qu, 2022. "Sustainable production of hydrogen with high purity from methanol and water at low temperatures," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    18. Shiqi Zhou & Wei Cao & Lu Shang & Yunxuan Zhao & Xuyang Xiong & Jianke Sun & Tierui Zhang & Jiayin Yuan, 2025. "Facilitating alkaline hydrogen evolution kinetics via interfacial modulation of hydrogen-bond networks by porous amine cages," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    19. Ulrike Küst & Rosemary Jones & Julia Prumbs & Alessandro Namar & Mattia Scardamaglia & Andrey Shavorskiy & Jan Knudsen, 2025. "Carbon subsurface traffic jam as driver for methane oxidation activity and selectivity on palladium surfaces," Nature Communications, Nature, vol. 16(1), pages 1-7, December.
    20. Yacheng Shi & Yang Liu, 2024. "Qualitative and quantitative electrochemiluminescence evaluation of trace Pt single-atom in MXenes," Nature Communications, Nature, vol. 15(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-64243-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.