Author
Listed:
- Ren Wei
(Peking University
Peking University)
- Zhijun Jin
(Peking University
Peking University)
- Mingsong Li
(Peking University)
- Shuai Yuan
(Peking University)
- Yongyun Hu
(Peking University)
- Lin Dong
(Peking University)
- Rui Zhang
(China University of Petroleum (Beijing))
- Juye Shi
(China University of Geosciences (Beijing))
Abstract
Tectonic processes and astronomical cycles are key drivers of Earth’s climate and carbon systems. However, their interplay in shaping late Paleozoic climate variability remains poorly constrained. Here, we divide the late Paleozoic (~360–250 Ma) into three distinct tectonic phases based on full-plate tectonic reconstructions, geochemical datasets, and carbon cycle modeling, thereby elucidating how global sea levels and organic carbon burial responded to astronomically forced climate fluctuations under different tectonic phases. Our results show that intervals spanning ~360–330 Ma and ~280–250 Ma were characterized by elevated atmospheric CO2 levels and intensified tectonic activity, which coincided with heightened climate variability and reduced regularity in orbitally paced sea-level changes. In contrast, during ~330–280 Ma, multiple proxies indicate reduced tectonic forcing and lower CO2 concentrations, which were accompanied by more stable climate conditions and clearer expression of astronomical cycles. These conditions facilitated rhythmic deposition and widespread organic carbon burial.
Suggested Citation
Ren Wei & Zhijun Jin & Mingsong Li & Shuai Yuan & Yongyun Hu & Lin Dong & Rui Zhang & Juye Shi, 2025.
"Tectonic–astronomical interactions in shaping late Paleozoic climate and organic carbon burial,"
Nature Communications, Nature, vol. 16(1), pages 1-12, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63896-z
DOI: 10.1038/s41467-025-63896-z
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63896-z. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.