Author
Listed:
- Shuai Fu
(University of Massachusetts)
- Hongyan Gao
(University of Massachusetts)
- Siqi Wang
(University of Massachusetts)
- Xiaoyu Wang
(University of Massachusetts)
- Trevor Woodard
(University of Massachusetts)
- Zhien Wang
(Massachusetts Institute of Technology)
- Jing Kong
(Massachusetts Institute of Technology)
- Derek R. Lovley
(University of Massachusetts
University of Massachusetts)
- Jun Yao
(University of Massachusetts
University of Massachusetts
University of Massachusetts)
Abstract
The efficient signal processing in biosystems is largely attributed to the powerful constituent unit of a neuron, which encodes and decodes spatiotemporal information using spiking action potentials of ultralow amplitude and energy. Constructing devices that can emulate neuronal functions is thus considered a promising step toward advancing neuromorphic electronics and enhancing signal flow in bioelectronic interfaces. However, existent artificial neurons often have functional parameters that are distinctly mismatched with their biological counterparts, including signal amplitude and energy levels that are typically an order of magnitude larger. Here, we demonstrate artificial neurons that not only closely emulate biological neurons in functions but also match their parameters in key aspects such as signal amplitude, spiking energy, temporal features, and frequency response. Moreover, these artificial neurons can be modulated by extracellular chemical species in a manner consistent with neuromodulation in biological neurons. We further show that an artificial neuron can connect to a biological cell to process cellular signals in real-time and interpret cell states. These results advance the potential for constructing bio-emulated electronics to improve bioelectronic interface and neuromorphic integration.
Suggested Citation
Shuai Fu & Hongyan Gao & Siqi Wang & Xiaoyu Wang & Trevor Woodard & Zhien Wang & Jing Kong & Derek R. Lovley & Jun Yao, 2025.
"Constructing artificial neurons with functional parameters comprehensively matching biological values,"
Nature Communications, Nature, vol. 16(1), pages 1-11, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63640-7
DOI: 10.1038/s41467-025-63640-7
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63640-7. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.