IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47226-3.html
   My bibliography  Save this article

A modular organic neuromorphic spiking circuit for retina-inspired sensory coding and neurotransmitter-mediated neural pathways

Author

Listed:
  • Giovanni Maria Matrone

    (Eindhoven University of Technology
    Northwestern University)

  • Eveline R. W. Doremaele

    (Eindhoven University of Technology)

  • Abhijith Surendran

    (Northwestern University)

  • Zachary Laswick

    (Northwestern University)

  • Sophie Griggs

    (Chemistry Research Laboratory, University of Oxford)

  • Gang Ye

    (Key Laboratory of Optoelectronic Devices and Systems, Shenzhen University)

  • Iain McCulloch

    (Chemistry Research Laboratory, University of Oxford
    KAUST Solar Center (KSC))

  • Francesca Santoro

    (Istituto Italiano di Tecnologia
    Forschungszentrum Juelich
    Faculty of Electrical Engineering and IT, RWTH Aachen)

  • Jonathan Rivnay

    (Northwestern University)

  • Yoeri Burgt

    (Eindhoven University of Technology)

Abstract

Signal communication mechanisms within the human body rely on the transmission and modulation of action potentials. Replicating the interdependent functions of receptors, neurons and synapses with organic artificial neurons and biohybrid synapses is an essential first step towards merging neuromorphic circuits and biological systems, crucial for computing at the biological interface. However, most organic neuromorphic systems are based on simple circuits which exhibit limited adaptability to both external and internal biological cues, and are restricted to emulate only specific the functions of an individual neuron/synapse. Here, we present a modular neuromorphic system which combines organic spiking neurons and biohybrid synapses to replicate a neural pathway. The spiking neuron mimics the sensory coding function of afferent neurons from light stimuli, while the neuromodulatory activity of interneurons is emulated by neurotransmitters-mediated biohybrid synapses. Combining these functions, we create a modular connection between multiple neurons to establish a pre-processing retinal pathway primitive.

Suggested Citation

  • Giovanni Maria Matrone & Eveline R. W. Doremaele & Abhijith Surendran & Zachary Laswick & Sophie Griggs & Gang Ye & Iain McCulloch & Francesca Santoro & Jonathan Rivnay & Yoeri Burgt, 2024. "A modular organic neuromorphic spiking circuit for retina-inspired sensory coding and neurotransmitter-mediated neural pathways," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47226-3
    DOI: 10.1038/s41467-024-47226-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47226-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47226-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Padinhare Cholakkal Harikesh & Chi-Yuan Yang & Deyu Tu & Jennifer Y. Gerasimov & Abdul Manan Dar & Adam Armada-Moreira & Matteo Massetti & Renee Kroon & David Bliman & Roger Olsson & Eleni Stavrinidou, 2022. "Organic electrochemical neurons and synapses with ion mediated spiking," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Peter Andersson Ersman & Roman Lassnig & Jan Strandberg & Deyu Tu & Vahid Keshmiri & Robert Forchheimer & Simone Fabiano & Göran Gustafsson & Magnus Berggren, 2019. "All-printed large-scale integrated circuits based on organic electrochemical transistors," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    3. Tianda Fu & Xiaomeng Liu & Shuai Fu & Trevor Woodard & Hongyan Gao & Derek R. Lovley & Jun Yao, 2021. "Self-sustained green neuromorphic interfaces," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    4. Kathleen Wiencke & Annette Horstmann & David Mathar & Arno Villringer & Jane Neumann, 2020. "Dopamine release, diffusion and uptake: A computational model for synaptic and volume transmission," PLOS Computational Biology, Public Library of Science, vol. 16(11), pages 1-26, November.
    5. Hongwei Tan & Quanzheng Tao & Ishan Pande & Sayani Majumdar & Fu Liu & Yifan Zhou & Per O. Å. Persson & Johanna Rosen & Sebastiaan van Dijken, 2020. "Tactile sensory coding and learning with bio-inspired optoelectronic spiking afferent nerves," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Padinhare Cholakkal Harikesh & Chi-Yuan Yang & Deyu Tu & Jennifer Y. Gerasimov & Abdul Manan Dar & Adam Armada-Moreira & Matteo Massetti & Renee Kroon & David Bliman & Roger Olsson & Eleni Stavrinidou, 2022. "Organic electrochemical neurons and synapses with ion mediated spiking," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Zhongfang Zhang & Xiaolong Zhao & Xumeng Zhang & Xiaohu Hou & Xiaolan Ma & Shuangzhu Tang & Ying Zhang & Guangwei Xu & Qi Liu & Shibing Long, 2022. "In-sensor reservoir computing system for latent fingerprint recognition with deep ultraviolet photo-synapses and memristor array," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Tianyu Wang & Jialin Meng & Xufeng Zhou & Yue Liu & Zhenyu He & Qi Han & Qingxuan Li & Jiajie Yu & Zhenhai Li & Yongkai Liu & Hao Zhu & Qingqing Sun & David Wei Zhang & Peining Chen & Huisheng Peng & , 2022. "Reconfigurable neuromorphic memristor network for ultralow-power smart textile electronics," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Hongwei Tan & Sebastiaan van Dijken, 2023. "Dynamic machine vision with retinomorphic photomemristor-reservoir computing," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Tiefeng Liu & Johanna Heimonen & Qilun Zhang & Chi-Yuan Yang & Jun-Da Huang & Han-Yan Wu & Marc-Antoine Stoeckel & Tom P. A. Pol & Yuxuan Li & Sang Young Jeong & Adam Marks & Xin-Yi Wang & Yuttapoom P, 2023. "Ground-state electron transfer in all-polymer donor:acceptor blends enables aqueous processing of water-insoluble conjugated polymers," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Ke Yang & Yanghao Wang & Pek Jun Tiw & Chaoming Wang & Xiaolong Zou & Rui Yuan & Chang Liu & Ge Li & Chen Ge & Si Wu & Teng Zhang & Ru Huang & Yuchao Yang, 2024. "High-order sensory processing nanocircuit based on coupled VO2 oscillators," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Xiaosong Wu & Shaocong Wang & Wei Huang & Yu Dong & Zhongrui Wang & Weiguo Huang, 2023. "Wearable in-sensor reservoir computing using optoelectronic polymers with through-space charge-transport characteristics for multi-task learning," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Fakun Wang & Fangchen Hu & Mingjin Dai & Song Zhu & Fangyuan Sun & Ruihuan Duan & Chongwu Wang & Jiayue Han & Wenjie Deng & Wenduo Chen & Ming Ye & Song Han & Bo Qiang & Yuhao Jin & Yunda Chua & Nan C, 2023. "A two-dimensional mid-infrared optoelectronic retina enabling simultaneous perception and encoding," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    9. Matteo Cucchi & Anton Weissbach & Lukas M. Bongartz & Richard Kantelberg & Hsin Tseng & Hans Kleemann & Karl Leo, 2022. "Thermodynamics of organic electrochemical transistors," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    10. Yang Gao & Yuchen Zhou & Xudong Ji & Austin J. Graham & Christopher M. Dundas & Ismar E. Miniel Mahfoud & Bailey M. Tibbett & Benjamin Tan & Gina Partipilo & Ananth Dodabalapur & Jonathan Rivnay & Ben, 2024. "A hybrid transistor with transcriptionally controlled computation and plasticity," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    11. Rui Yuan & Qingxi Duan & Pek Jun Tiw & Ge Li & Zhuojian Xiao & Zhaokun Jing & Ke Yang & Chang Liu & Chen Ge & Ru Huang & Yuchao Yang, 2022. "A calibratable sensory neuron based on epitaxial VO2 for spike-based neuromorphic multisensory system," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    12. Xiaomeng Liu & Toshiyuki Ueki & Hongyan Gao & Trevor L. Woodard & Kelly P. Nevin & Tianda Fu & Shuai Fu & Lu Sun & Derek R. Lovley & Jun Yao, 2022. "Microbial biofilms for electricity generation from water evaporation and power to wearables," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47226-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.