IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-59240-0.html
   My bibliography  Save this article

Stretchable all-gel organic electrochemical transistors

Author

Listed:
  • Linlin Lu

    (Tongji University)

  • Xu Liu

    (Tongji University)

  • Puzhong Gu

    (Tongji University)

  • Zhenyu Hu

    (Tongji University)

  • Xing Liang

    (Tongji University)

  • Zhiying Deng

    (Tongji University)

  • Zejun Sun

    (Tongji University)

  • Xiaoyu Zhang

    (Tongji University)

  • Xiao Yang

    (Tongji University)

  • Jie Yang

    (Tongji University)

  • Guoqing Zu

    (Tongji University)

  • Jia Huang

    (Tongji University)

Abstract

Stretchable organic electrochemical transistors (OECTs) are promising for flexible electronics. However, the balance between stretchability and electrical properties is a great challenge for OECTs. Here, high-performance stretchable all-gel OECTs based on semiconducting polymer gel active layers and poly(ionic liquid) ionogel electrolytes are developed. The all-gel network structures effectively promote ion penetration/transport and endows the OECTs with high stretchability. The resulting OECTs exhibit an excellent combination of ultra-high transconductance of 86.4 mS, on/off ratio of 1.2 × 105, stretchability up to 50%, and high stretching stability up to 10000 cycles under 30% strain. We demonstrate that the all-gel OECTs can be used as stretchable pressure-sensitive electronic skins with a low detection limit for tactile perception of robotic hands. In addition, the all-gel OECTs can be applied as stretchable artificial synapses for neuromorphic simulation and highly sensitive stretchable gas sensors for simulating olfactory perception process and monitoring food quality. This work provides a general all-gel strategy toward high-performance flexible electronics.

Suggested Citation

  • Linlin Lu & Xu Liu & Puzhong Gu & Zhenyu Hu & Xing Liang & Zhiying Deng & Zejun Sun & Xiaoyu Zhang & Xiao Yang & Jie Yang & Guoqing Zu & Jia Huang, 2025. "Stretchable all-gel organic electrochemical transistors," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59240-0
    DOI: 10.1038/s41467-025-59240-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-59240-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-59240-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Padinhare Cholakkal Harikesh & Chi-Yuan Yang & Deyu Tu & Jennifer Y. Gerasimov & Abdul Manan Dar & Adam Armada-Moreira & Matteo Massetti & Renee Kroon & David Bliman & Roger Olsson & Eleni Stavrinidou, 2022. "Organic electrochemical neurons and synapses with ion mediated spiking," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Xiaoyu Zhang & Qi Sun & Xing Liang & Puzhong Gu & Zhenyu Hu & Xiao Yang & Muxiang Liu & Zejun Sun & Jia Huang & Guangming Wu & Guoqing Zu, 2024. "Stretchable and negative-Poisson-ratio porous metamaterials," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Yang Gao & Yuchen Zhou & Xudong Ji & Austin J. Graham & Christopher M. Dundas & Ismar E. Miniel Mahfoud & Bailey M. Tibbett & Benjamin Tan & Gina Partipilo & Ananth Dodabalapur & Jonathan Rivnay & Ben, 2024. "A hybrid transistor with transcriptionally controlled computation and plasticity," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Jia Liu & Jiechen Wang & Zhitao Zhang & Francisco Molina-Lopez & Ging-Ji Nathan Wang & Bob C. Schroeder & Xuzhou Yan & Yitian Zeng & Oliver Zhao & Helen Tran & Ting Lei & Yang Lu & Yi-Xuan Wang & Jeff, 2020. "Fully stretchable active-matrix organic light-emitting electrochemical cell array," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giovanni Maria Matrone & Eveline R. W. Doremaele & Abhijith Surendran & Zachary Laswick & Sophie Griggs & Gang Ye & Iain McCulloch & Francesca Santoro & Jonathan Rivnay & Yoeri Burgt, 2024. "A modular organic neuromorphic spiking circuit for retina-inspired sensory coding and neurotransmitter-mediated neural pathways," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Haojie Lu & Yong Zhang & Mengjia Zhu & Shuo Li & Huarun Liang & Peng Bi & Shuai Wang & Haomin Wang & Linli Gan & Xun-En Wu & Yingying Zhang, 2024. "Intelligent perceptual textiles based on ionic-conductive and strong silk fibers," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Mingliang Li & Jing Zheng & Xiaoge Wang & Runze Yu & Yunteng Wang & Yi Qiu & Xiang Cheng & Guozhi Wang & Gang Chen & Kefeng Xie & Jinyao Tang, 2022. "Light-responsive self-strained organic semiconductor for large flexible OFET sensing array," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Tiefeng Liu & Johanna Heimonen & Qilun Zhang & Chi-Yuan Yang & Jun-Da Huang & Han-Yan Wu & Marc-Antoine Stoeckel & Tom P. A. Pol & Yuxuan Li & Sang Young Jeong & Adam Marks & Xin-Yi Wang & Yuttapoom P, 2023. "Ground-state electron transfer in all-polymer donor:acceptor blends enables aqueous processing of water-insoluble conjugated polymers," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Xiaosong Wu & Shaocong Wang & Wei Huang & Yu Dong & Zhongrui Wang & Weiguo Huang, 2023. "Wearable in-sensor reservoir computing using optoelectronic polymers with through-space charge-transport characteristics for multi-task learning," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Yuanyuan Yang & Yajing Shen, 2024. "A liquid metal-based module emulating the intelligent preying logic of flytrap," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    7. Zachary Laswick & Xihu Wu & Abhijith Surendran & Zhongliang Zhou & Xudong Ji & Giovanni Maria Matrone & Wei Lin Leong & Jonathan Rivnay, 2024. "Tunable anti-ambipolar vertical bilayer organic electrochemical transistor enable neuromorphic retinal pathway," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    8. Donggyun Lee & Su-Bon Kim & Taehyun Kim & Dongho Choi & Jee Hoon Sim & Woochan Lee & Hyunsu Cho & Jong-Heon Yang & Junho Kim & Sangin Hahn & Hanul Moon & Seunghyup Yoo, 2024. "Stretchable OLEDs based on a hidden active area for high fill factor and resolution compensation," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    9. Shuai Chen & Zhongliang Zhou & Kunqi Hou & Xihu Wu & Qiang He & Cindy G. Tang & Ting Li & Xiujuan Zhang & Jiansheng Jie & Zhiyi Gao & Nripan Mathews & Wei Lin Leong, 2024. "Artificial organic afferent nerves enable closed-loop tactile feedback for intelligent robot," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    10. Imke Krauhausen & Sophie Griggs & Iain McCulloch & Jaap M. J. Toonder & Paschalis Gkoupidenis & Yoeri Burgt, 2024. "Bio-inspired multimodal learning with organic neuromorphic electronics for behavioral conditioning in robotics," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    11. Trevor R. Simmons & Gina Partipilo & Ryan Buchser & Anna C. Stankes & Rashmi Srivastava & Darian Chiu & Benjamin K. Keitz & Lydia M. Contreras, 2024. "Rewiring native post-transcriptional global regulators to achieve designer, multi-layered genetic circuits," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    12. Pietro Belleri & Judith Pons i Tarrés & Iain McCulloch & Paul W. M. Blom & Zsolt M. Kovács-Vajna & Paschalis Gkoupidenis & Fabrizio Torricelli, 2024. "Unravelling the operation of organic artificial neurons for neuromorphic bioelectronics," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59240-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.