IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-63532-w.html
   My bibliography  Save this article

Solvent engineering enables tin-lead perovskite films with long carrier diffusion lengths and reduced tin segregation

Author

Listed:
  • Sheng Li

    (Wuhan University
    Wuhan Institute of Quantum Technology)

  • Xiaotian Yang

    (Wuhan University)

  • Siyang Cheng

    (Wuhan University
    Wuhan Institute of Quantum Technology)

  • Yujie Yang

    (Wuhan University)

  • Hao Li

    (Wuhan University)

  • Zhuo Zheng

    (Wuhan University
    Wuhan Institute of Quantum Technology)

  • Mubai Li

    (Wuhan University)

  • Qiuhan Yu

    (Wuhan University)

  • Shengjun Yuan

    (Wuhan University
    Wuhan Institute of Quantum Technology)

  • Qianqian Lin

    (Wuhan University)

  • Zhiping Wang

    (Wuhan University
    Wuhan Institute of Quantum Technology)

Abstract

All-perovskite tandem solar cells offer great promise for achieving low levelized cost of electricity, but their performance remains limited by insufficient near-infrared photon absorption in narrow bandgap tin-lead (Sn-Pb) subcells. Micron-thick Sn-Pb layers are essential for maximizing absorption, yet high-concentration precursor solutions often cause non-uniform crystallization, stoichiometric imbalance and limited carrier diffusion lengths. Here we identify the root cause of these limitations as the insufficient coordination of tin(II) iodide (SnI2) in conventional dimethylformamide (DMF)/dimethyl sulfoxide (DMSO) binary solvent system at high precursor concentrations, resulting in Sn-rich colloids that nucleate detrimental Sn-rich phases in final films. To address this, we develop a ternary solvent system that fully coordinates with SnI2, suppressing Sn-rich phases and enabling stoichiometric, micron-thick Sn-Pb films with carrier diffusion lengths of ~11 μm. The enhanced Sn-Pb absorber achieves efficiencies of 24.2% in single-junction cells and 29.3% in tandem devices, along with significantly improved long-term operational stability.

Suggested Citation

  • Sheng Li & Xiaotian Yang & Siyang Cheng & Yujie Yang & Hao Li & Zhuo Zheng & Mubai Li & Qiuhan Yu & Shengjun Yuan & Qianqian Lin & Zhiping Wang, 2025. "Solvent engineering enables tin-lead perovskite films with long carrier diffusion lengths and reduced tin segregation," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63532-w
    DOI: 10.1038/s41467-025-63532-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-63532-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-63532-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jin Zhou & Shiqiang Fu & Shun Zhou & Lishuai Huang & Cheng Wang & Hongling Guan & Dexin Pu & Hongsen Cui & Chen Wang & Ti Wang & Weiwei Meng & Guojia Fang & Weijun Ke, 2024. "Mixed tin-lead perovskites with balanced crystallization and oxidation barrier for all-perovskite tandem solar cells," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Bin Chen & Se-Woong Baek & Yi Hou & Erkan Aydin & Michele De Bastiani & Benjamin Scheffel & Andrew Proppe & Ziru Huang & Mingyang Wei & Ya-Kun Wang & Eui-Hyuk Jung & Thomas G. Allen & Emmanuel Van Ker, 2020. "Enhanced optical path and electron diffusion length enable high-efficiency perovskite tandems," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    3. Zhibin Yang & Zhenhua Yu & Haotong Wei & Xun Xiao & Zhenyi Ni & Bo Chen & Yehao Deng & Severin N. Habisreutinger & Xihan Chen & Kang Wang & Jingjing Zhao & Peter N. Rudd & Joseph J. Berry & Matthew C., 2019. "Enhancing electron diffusion length in narrow-bandgap perovskites for efficient monolithic perovskite tandem solar cells," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    4. Renxing Lin & Jian Xu & Mingyang Wei & Yurui Wang & Zhengyuan Qin & Zhou Liu & Jinlong Wu & Ke Xiao & Bin Chen & So Min Park & Gang Chen & Harindi R. Atapattu & Kenneth R. Graham & Jun Xu & Jia Zhu & , 2022. "All-perovskite tandem solar cells with improved grain surface passivation," Nature, Nature, vol. 603(7899), pages 73-78, March.
    5. Shun Zhou & Shiqiang Fu & Chen Wang & Weiwei Meng & Jin Zhou & Yuanrong Zou & Qingxian Lin & Lishuai Huang & Wenjun Zhang & Guojun Zeng & Dexin Pu & Hongling Guan & Cheng Wang & Kailian Dong & Hongsen, 2023. "Aspartate all-in-one doping strategy enables efficient all-perovskite tandems," Nature, Nature, vol. 624(7990), pages 69-73, December.
    6. Rui He & Wanhai Wang & Zongjin Yi & Felix Lang & Cong Chen & Jincheng Luo & Jingwei Zhu & Jarla Thiesbrummel & Sahil Shah & Kun Wei & Yi Luo & Changlei Wang & Huagui Lai & Hao Huang & Jie Zhou & Bings, 2023. "Improving interface quality for 1-cm2 all-perovskite tandem solar cells," Nature, Nature, vol. 618(7963), pages 80-86, June.
    7. Chongwen Li & Lei Chen & Fangyuan Jiang & Zhaoning Song & Xiaoming Wang & Adam Balvanz & Esma Ugur & Yuan Liu & Cheng Liu & Aidan Maxwell & Hao Chen & Yanjiang Liu & Zaiwei Wang & Pan Xia & You Li & S, 2024. "Diamine chelates for increased stability in mixed Sn–Pb and all-perovskite tandem solar cells," Nature Energy, Nature, vol. 9(11), pages 1388-1396, November.
    8. Zhenhua Yu & Zhibin Yang & Zhenyi Ni & Yuchuan Shao & Bo Chen & Yuze Lin & Haotong Wei & Zhengshan J. Yu & Zachary Holman & Jinsong Huang, 2020. "Simplified interconnection structure based on C60/SnO2-x for all-perovskite tandem solar cells," Nature Energy, Nature, vol. 5(9), pages 657-665, September.
    9. Renxing Lin & Yurui Wang & Qianwen Lu & Beibei Tang & Jiayi Li & Han Gao & Yuan Gao & Hongjiang Li & Changzeng Ding & Jin Wen & Pu Wu & Chenshuaiyu Liu & Siyang Zhao & Ke Xiao & Zhou Liu & Changqi Ma , 2023. "All-perovskite tandem solar cells with 3D/3D bilayer perovskite heterojunction," Nature, Nature, vol. 620(7976), pages 994-1000, August.
    10. Tomas Leijtens & Kevin A. Bush & Rohit Prasanna & Michael D. McGehee, 2018. "Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors," Nature Energy, Nature, vol. 3(10), pages 828-838, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xufeng Liao & Xuefei Jia & Weisheng Li & Xiting Lang & Jianhua Zhang & Xinyu Zhao & Yitong Ji & Qingguo Du & Chun-Hsiao Kuan & Zhiwei Ren & Wenchao Huang & Yang Bai & Kaicheng Zhang & Chuanxiao Xiao &, 2025. "Methylammonium-free, high-efficiency, and stable all-perovskite tandem solar cells enabled by multifunctional rubidium acetate," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    2. Wenbo Li & Zhe Li & Shun Zhou & Yanzhuo Gou & Guang Li & Jinghao Li & Cheng Wang & Yan Zeng & Jiakai Yan & Yan Li & Wei Dai & Yaoguang Rong & Weijun Ke & Ti Wang & Hongxing Xu, 2025. "Unveiling the nexus between irradiation and phase reconstruction in tin-lead perovskite solar cells," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    3. Yang Bai & Yuanyuan Meng & Ming Yang & Ruijia Tian & Jingnan Wang & Boxin Jiao & Haibin Pan & Jiangwei Gao & Yaohua Wang & Kexuan Sun & Shujing Zhou & Xiaoyi Lu & Zhenhua Song & Chang Liu & Ziyi Ge, 2025. "Lattice stabilization and strain homogenization in Sn-Pb bottom subcells enable stable all-perovskite tandems solar cells," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    4. Weiqing Chen & Shun Zhou & Hongsen Cui & Weiwei Meng & Hongling Guan & Guojun Zeng & Yansong Ge & Sengke Cheng & Zixi Yu & Dexin Pu & Lishuai Huang & Jin Zhou & Guoyi Chen & Guang Li & Hongyi Fang & Z, 2025. "Universal in situ oxide-based ABX3-structured seeds for templating halide perovskite growth in All-perovskite tandems," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    5. Jingwei Zhu & Xiaozhen Huang & Yi Luo & Wenbo Jiao & Yuliang Xu & Juncheng Wang & Zhiyu Gao & Kun Wei & Tianshu Ma & Jiayu You & Jialun Jin & Shenghan Wu & Zhihao Zhang & Wenqing Liang & Yang Wang & S, 2025. "Self-assembled hole-selective contact for efficient Sn-Pb perovskite solar cells and all-perovskite tandems," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    6. Yuhui Liu & Tianshu Ma & Changlei Wang & Zhenhai Yang & Yue Zhao & Zhanghao Wu & Chen Chen & Yining Bao & Yuhang Zhai & Tianci Jia & Cong Chen & Dewei Zhao & Xiaofeng Li, 2025. "Synergistic immobilization of ions in mixed tin-lead and all-perovskite tandem solar cells," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    7. Khan, Firoz & Rezgui, Béchir Dridi & Khan, Mohd Taukeer & Al-Sulaiman, Fahad, 2022. "Perovskite-based tandem solar cells: Device architecture, stability, and economic perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    8. Jianan Wang & Shuaifeng Hu & He Zhu & Sanwan Liu & Zhongyong Zhang & Rui Chen & Junke Wang & Chenyang Shi & Jiaqi Zhang & Wentao Liu & Xia Lei & Bin Liu & Yongyan Pan & Fumeng Ren & Hasan Raza & Qisen, 2025. "Mercapto-functionalized scaffold improves perovskite buried interfaces for tandem photovoltaics," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    9. Junjun Zhang & Zengyang Ma & Yitian Zhang & Xinxing Liu & Ruiming Li & Qianqian Lin & Guojia Fang & Xue Zheng & Weimin Li & Chunlei Yang & Jianmin Li & Junbo Gong & Xudong Xiao, 2024. "Highly efficient narrow bandgap Cu(In,Ga)Se2 solar cells with enhanced open circuit voltage for tandem application," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Jin Zhou & Shiqiang Fu & Shun Zhou & Lishuai Huang & Cheng Wang & Hongling Guan & Dexin Pu & Hongsen Cui & Chen Wang & Ti Wang & Weiwei Meng & Guojia Fang & Weijun Ke, 2024. "Mixed tin-lead perovskites with balanced crystallization and oxidation barrier for all-perovskite tandem solar cells," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    11. Yurui Wang & Renxing Lin & Xiaoyu Wang & Chenshuaiyu Liu & Yameen Ahmed & Zilong Huang & Zhibin Zhang & Hongjiang Li & Mei Zhang & Yuan Gao & Haowen Luo & Pu Wu & Han Gao & Xuntian Zheng & Manya Li & , 2023. "Oxidation-resistant all-perovskite tandem solar cells in substrate configuration," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    12. Yao Zhang & Chunyan Li & Haiyan Zhao & Zhongxun Yu & Xiaoan Tang & Jixiang Zhang & Zhenhua Chen & Jianrong Zeng & Peng Zhang & Liyuan Han & Han Chen, 2024. "Synchronized crystallization in tin-lead perovskite solar cells," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    13. Yongyan Pan & Jianan Wang & Zhenxing Sun & Jiaqi Zhang & Zheng Zhou & Chenyang Shi & Sanwan Liu & Fumeng Ren & Rui Chen & Yong Cai & Huande Sun & Bin Liu & Zhongyong Zhang & Zhengjing Zhao & Zihe Cai , 2024. "Surface chemical polishing and passivation minimize non-radiative recombination for all-perovskite tandem solar cells," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    14. Florine M. Rombach & Akash Dasgupta & Manuel Kober-Czerny & Heon Jin & James M. Ball & Joel A. Smith & Michael D. Farrar & Henry J. Snaith, 2025. "Disentangling degradation pathways of narrow bandgap lead-tin perovskite material and photovoltaic devices," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    15. Jin Wen & Yicheng Zhao & Pu Wu & Yuxuan Liu & Xuntian Zheng & Renxing Lin & Sushu Wan & Ke Li & Haowen Luo & Yuxi Tian & Ludong Li & Hairen Tan, 2023. "Heterojunction formed via 3D-to-2D perovskite conversion for photostable wide-bandgap perovskite solar cells," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    16. Chenyang Shi & Jianan Wang & Xia Lei & Qisen Zhou & Weitao Wang & Zhichun Yang & Sanwan Liu & Jiaqi Zhang & He Zhu & Rui Chen & Yongyan Pan & Zhengtian Tan & Wenguang Liu & Zhengjing Zhao & Zihe Cai &, 2025. "Modulating competitive adsorption of hybrid self-assembled molecules for efficient wide-bandgap perovskite solar cells and tandems," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    17. Bahram Abdollahi Nejand & David B. Ritzer & Hang Hu & Fabian Schackmar & Somayeh Moghadamzadeh & Thomas Feeney & Roja Singh & Felix Laufer & Raphael Schmager & Raheleh Azmi & Milian Kaiser & Tobias Ab, 2022. "Scalable two-terminal all-perovskite tandem solar modules with a 19.1% efficiency," Nature Energy, Nature, vol. 7(7), pages 620-630, July.
    18. Kyle Frohna & Cullen Chosy & Amran Al-Ashouri & Florian Scheler & Yu-Hsien Chiang & Milos Dubajic & Julia E. Parker & Jessica M. Walker & Lea Zimmermann & Thomas A. Selby & Yang Lu & Bart Roose & Stev, 2025. "The impact of interfacial quality and nanoscale performance disorder on the stability of alloyed perovskite solar cells," Nature Energy, Nature, vol. 10(1), pages 66-76, January.
    19. Shuchen Tan & Chongwen Li & Cheng Peng & Wenjian Yan & Hongkai Bu & Haokun Jiang & Fang Yue & Linbao Zhang & Hongtao Gao & Zhongmin Zhou, 2024. "Sustainable thermal regulation improves stability and efficiency in all-perovskite tandem solar cells," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    20. Jingnan Wang & Boxin Jiao & Ruijia Tian & Kexuan Sun & Yuanyuan Meng & Yang Bai & Xiaoyi Lu & Bin Han & Ming Yang & Yaohua Wang & Shujing Zhou & Haibin Pan & Zhenhuan Song & Chuanxiao Xiao & Chang Liu, 2025. "Less-acidic boric acid-functionalized self-assembled monolayer for mitigating NiOx corrosion for efficient all-perovskite tandem solar cells," Nature Communications, Nature, vol. 16(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63532-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.