IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-63512-0.html
   My bibliography  Save this article

Emergence of lignin-carbohydrate interactions during plant stem maturation visualized by solid-state NMR

Author

Listed:
  • Peng Xiao

    (Michigan State University)

  • Sarah A. Pfaff

    (Pennsylvania State University)

  • Wancheng Zhao

    (Michigan State University
    National Institutes of Health)

  • Debkumar Debnath

    (Michigan State University)

  • Cameron S. Vojvodin

    (Michigan State University)

  • Chang-Jun Liu

    (Brookhaven National Laboratory)

  • Daniel J. Cosgrove

    (Pennsylvania State University)

  • Tuo Wang

    (Michigan State University)

Abstract

Lignification waterproofs and strengthens secondary plant cell walls but increases the energy cost of sugar release for biofuels. The physical association between lignin and the carbohydrate scaffold that accommodates lignin polymerization, along with the distinct roles of lignin units and carbohydrate partners during lignification, remain unclear. Here, we map lignin-carbohydrate spatial proximity by solid-state NMR in 13C-labeled Arabidopsis inflorescence stems during secondary cell wall formation. Analyses include wild-type plants and mutants that selectively or globally disrupt lignin biosynthesis. Mature walls in basal regions show enrichment of S-lignin and dense carbohydrate-lignin packing. Acetylated xylan predominantly associates with S-lignin, while methylated pectin unexpectedly interacts with G-lignin during early-stage lignification. The importance of S-lignin in stabilizing the carbohydrate-lignin interface is highlighted by weak lignin-carbohydrate contacts and compromised mechanical properties in the low-S fah1 mutant, whereas the ref3 mutant, despite reduced lignin content, remains unaffected due to a high S/G ratio. Thus, molecular mixing patterns, rather than lignin content, critically determine the structure and properties of lignocellulosic materials.

Suggested Citation

  • Peng Xiao & Sarah A. Pfaff & Wancheng Zhao & Debkumar Debnath & Cameron S. Vojvodin & Chang-Jun Liu & Daniel J. Cosgrove & Tuo Wang, 2025. "Emergence of lignin-carbohydrate interactions during plant stem maturation visualized by solid-state NMR," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63512-0
    DOI: 10.1038/s41467-025-63512-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-63512-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-63512-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alex Kirui & Wancheng Zhao & Fabien Deligey & Hui Yang & Xue Kang & Frederic Mentink-Vigier & Tuo Wang, 2022. "Carbohydrate-aromatic interface and molecular architecture of lignocellulose," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Dan Ye & Sintu Rongpipi & Sarah N. Kiemle & William J. Barnes & Arielle M. Chaves & Chenhui Zhu & Victoria A. Norman & Alexander Liebman-Peláez & Alexander Hexemer & Michael F. Toney & Alison W. Rober, 2020. "Preferred crystallographic orientation of cellulose in plant primary cell walls," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    3. Xue Kang & Alex Kirui & Malitha C. Dickwella Widanage & Frederic Mentink-Vigier & Daniel J. Cosgrove & Tuo Wang, 2019. "Lignin-polysaccharide interactions in plant secondary cell walls revealed by solid-state NMR," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    4. Oliver M. Terrett & Jan J. Lyczakowski & Li Yu & Dinu Iuga & W. Trent Franks & Steven P. Brown & Ray Dupree & Paul Dupree, 2019. "Molecular architecture of softwood revealed by solid-state NMR," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    5. Xue Kang & Alex Kirui & Artur Muszyński & Malitha C. Dickwella Widanage & Adrian Chen & Parastoo Azadi & Ping Wang & Frederic Mentink-Vigier & Tuo Wang, 2018. "Molecular architecture of fungal cell walls revealed by solid-state NMR," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Malitha C. Dickwella Widanage & Kalpana Singh & Jizhou Li & Jayasubba Reddy Yarava & Faith J. Scott & Yifan Xu & Neil A. R. Gow & Frederic Mentink-Vigier & Ping Wang & Frederic Lamoth & Tuo Wang, 2025. "Distinct echinocandin responses of Candida albicans and Candida auris cell walls revealed by solid-state NMR," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    2. Arnab Chakraborty & Liyanage D. Fernando & Wenxia Fang & Malitha C. Dickwella Widanage & Pingzhen Wei & Cheng Jin & Thierry Fontaine & Jean-Paul Latgé & Tuo Wang, 2021. "A molecular vision of fungal cell wall organization by functional genomics and solid-state NMR," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    3. Malitha C. Dickwella Widanage & Isha Gautam & Daipayan Sarkar & Frederic Mentink-Vigier & Josh V. Vermaas & Shi-You Ding & Andrew S. Lipton & Thierry Fontaine & Jean-Paul Latgé & Ping Wang & Tuo Wang, 2024. "Adaptative survival of Aspergillus fumigatus to echinocandins arises from cell wall remodeling beyond β−1,3-glucan synthesis inhibition," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Shi, Tao & Liu, Zhi-Hua & Ragauskas, Arthur J. & Yuan, Ying-Jin & Li, Bing-Zhi, 2025. "Versatile lignin valorization drives sustainable agriculture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 215(C).
    5. Ran Zhang & Zhen Hu & Yanting Wang & Huizhen Hu & Fengcheng Li & Mi Li & Arthur Ragauskas & Tao Xia & Heyou Han & Jingfeng Tang & Haizhong Yu & Bingqian Xu & Liangcai Peng, 2023. "Single-molecular insights into the breakpoint of cellulose nanofibers assembly during saccharification," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Liu, Zhi-Hua & Liu, He & Xu, Tao & Zhao, Zhi-Min & Ragauskas, Arthur J. & Li, Bing-Zhi & Yuan, Joshua S. & Yuan, Ying-Jin, 2025. "Lignin valorization reshapes sustainable biomass refining," Renewable and Sustainable Energy Reviews, Elsevier, vol. 211(C).
    7. Wang, Lan & Bu, Yongxin & Sun, Lele & Chen, Hongzhang, 2023. "A sequential combination of advanced oxidation and enzymatic hydrolysis reduces the enzymatic dosage for lignocellulose degradation," Renewable Energy, Elsevier, vol. 211(C), pages 617-625.
    8. Yoshihisa Yoshimi & Li Yu & Rosalie Cresswell & Xinyu Guo & Alberto Echevarría-Poza & Jan J. Lyczakowski & Ray Dupree & Toshihisa Kotake & Paul Dupree, 2025. "Glucomannan engineering highlights roles of galactosyl modification in fine-tuning cellulose-glucomannan interaction in Arabidopsis cell walls," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    9. Zhu, J.Y. & Pan, Xuejun, 2022. "Efficient sugar production from plant biomass: Current status, challenges, and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    10. Zhiyou Zong & Scott Mazurkewich & Caroline S. Pereira & Haohao Fu & Wensheng Cai & Xueguang Shao & Munir S. Skaf & Johan Larsbrink & Leila Lo Leggio, 2022. "Mechanism and biomass association of glucuronoyl esterase: an α/β hydrolase with potential in biomass conversion," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    11. Robert Röllig & Annie Lebreton & Lucia Grenga & Rosalie Cresswell & Signe Lett & Theodora Tryfona & David Navarro & Julien Lambert & Sacha Grisel & Isabelle Gimbert & Helle Jakobe Martens & Guylaine M, 2025. "Wood decay under anoxia by the brown-rot fungus Fomitopsis pinicola," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    12. Li Xu & Meifang Cao & Jiefeng Zhou & Yuxia Pang & Zhixian Li & Dongjie Yang & Shao-Yuan Leu & Hongming Lou & Xuejun Pan & Xueqing Qiu, 2024. "Aqueous amine enables sustainable monosaccharide, monophenol, and pyridine base coproduction in lignocellulosic biorefineries," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    13. Petrovič, Aleksandra & Cenčič Predikaka, Tjaša & Parlov Vuković, Jelena & Jednačak, Tomislav & Hribernik, Silvo & Vohl, Sabina & Urbancl, Danijela & Tišma, Marina & Čuček, Lidija, 2024. "Sustainable hydrothermal co-carbonization of residues from the vegetable oil industry and sewage sludge: Hydrochar production and liquid fraction valorisation," Energy, Elsevier, vol. 307(C).
    14. Eirik G. Kommedal & Camilla F. Angeltveit & Leesa J. Klau & Iván Ayuso-Fernández & Bjørnar Arstad & Simen G. Antonsen & Yngve Stenstrøm & Dag Ekeberg & Francisco Gírio & Florbela Carvalheiro & Svein J, 2023. "Visible light-exposed lignin facilitates cellulose solubilization by lytic polysaccharide monooxygenases," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    15. Xingming Sun & Haiyan Xiong & Conghui Jiang & Dongmei Zhang & Zengling Yang & Yuanping Huang & Wanbin Zhu & Shuaishuai Ma & Junzhi Duan & Xin Wang & Wei Liu & Haifeng Guo & Gangling Li & Jiawei Qi & C, 2022. "Natural variation of DROT1 confers drought adaptation in upland rice," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    16. Liyanage D. Fernando & Yordanis Pérez-Llano & Malitha C. Dickwella Widanage & Anand Jacob & Liliana Martínez-Ávila & Andrew S. Lipton & Nina Gunde-Cimerman & Jean-Paul Latgé & Ramón Alberto Batista-Ga, 2023. "Structural adaptation of fungal cell wall in hypersaline environment," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    17. Qinghui Cheng & Malitha C. Dickwella Widanage & Jayasubba Reddy Yarava & Ankur Ankur & Jean-Paul Latgé & Ping Wang & Tuo Wang, 2024. "Molecular architecture of chitin and chitosan-dominated cell walls in zygomycetous fungal pathogens by solid-state NMR," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    18. Qinglu Liu & Tang Tang & Ziyu Tian & Shiwen Ding & Linqin Wang & Dexin Chen & Zhiwei Wang & Wentao Zheng & Husileng Lee & Xingyu Lu & Xiaohe Miao & Lin Liu & Licheng Sun, 2024. "A high-performance watermelon skin ion-solvating membrane for electrochemical CO2 reduction," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    19. Alexandre Poulhazan & Alexandre A. Arnold & Frederic Mentink-Vigier & Artur Muszyński & Parastoo Azadi & Adnan Halim & Sergey Y. Vakhrushev & Hiren Jitendra Joshi & Tuo Wang & Dror E. Warschawski & Is, 2024. "Molecular-level architecture of Chlamydomonas reinhardtii’s glycoprotein-rich cell wall," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63512-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.