Author
Listed:
- Emil Uffelmann
(Vrije Universiteit Amsterdam)
- Alkes L. Price
(Harvard T. H. Chan School of Public Health
Harvard T. H. Chan School of Public Health
Broad Institute of MIT and Harvard)
- Danielle Posthuma
(Vrije Universiteit Amsterdam
Amsterdam University Medical Center)
- Wouter J. Peyrot
(Vrije Universiteit Amsterdam
Department of Psychiatry
Amsterdam Public Health)
Abstract
Polygenic Scores (PGSs) summarize an individual’s genetic propensity for a given trait. Bayesian methods, which improve the prediction accuracy of PGSs, are not well-calibrated for binary disorder traits in ascertained samples. This is a problem because well-calibrated PGSs are needed for future clinical implementation. We introduce the Bayesian polygenic score Probability Conversion (BPC) approach, which computes an individual’s predicted disorder probability using genome-wide association study summary statistics, an existing Bayesian PGS method (e.g. PRScs, SBayesR), the individual’s genotype data, and a prior disorder probability (which can be specified flexibly, based for example on literature, small reference samples, or prior elicitation). The BPC approach is practical in its application as it does not require a tuning sample with both genotype and phenotype data. Here, we show in simulated and empirical data of nine disorder traits that BPC yields well-calibrated results that are consistently better than the results of another recently published approach.
Suggested Citation
Emil Uffelmann & Alkes L. Price & Danielle Posthuma & Wouter J. Peyrot, 2025.
"Estimating disorder probability based on polygenic prediction using the BPC approach,"
Nature Communications, Nature, vol. 16(1), pages 1-13, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62929-x
DOI: 10.1038/s41467-025-62929-x
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62929-x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.