IDEAS home Printed from https://ideas.repec.org/a/plo/pgen00/1011249.html
   My bibliography  Save this article

Correlation-based tests for the formal comparison of polygenic scores in multiple populations

Author

Listed:
  • Sophia Gunn
  • Kathryn L Lunetta

Abstract

Polygenic scores (PGS) are measures of genetic risk, derived from the results of genome wide association studies (GWAS). Previous work has proposed the coefficient of determination (R2) as an appropriate measure by which to compare PGS performance in a validation dataset. Here we propose correlation-based methods for evaluating PGS performance by adapting previous work which produced a statistical framework and robust test statistics for the comparison of multiple correlation measures in multiple populations. This flexible framework can be extended to a wider variety of hypothesis tests than currently available methods. We assess our proposed method in simulation and demonstrate its utility with two examples, assessing previously developed PGS for low-density lipoprotein cholesterol and height in multiple populations in the All of Us cohort. Finally, we provide an R package ‘coranova’ with both parametric and nonparametric implementations of the described methods.Author summary: Polygenic scores (PGS) are measures of genetic risk of disease that have been widely embraced by the scientific community. While there are many methods available to develop PGS, we have limited tools by which to compare PGS performance. Previous work has proposed an R2-based approach which appropriately accounts for the correlation between PGS when comparing their performance. Here, we propose correlation-based tests which can assess multiple scores in multiple populations while accounting for the correlation between the scores. Our method is highly flexible and can be used by researchers to test any linear hypothesis of PGS performance, though we suggest three ANOVA-like tests as a starting point. We apply our method to PGS developed for LDL cholesterol and height in the All of Us cohort. In these examples, we demonstrate how our method can be used by researchers to compare and evaluate PGS in multiple populations. This approach will be particularly useful as we look to improve PGS performance in underrepresented populations in genetic research and need to evaluate PGS in multiple populations to appropriately assess PGS performance.

Suggested Citation

  • Sophia Gunn & Kathryn L Lunetta, 2024. "Correlation-based tests for the formal comparison of polygenic scores in multiple populations," PLOS Genetics, Public Library of Science, vol. 20(4), pages 1-17, April.
  • Handle: RePEc:plo:pgen00:1011249
    DOI: 10.1371/journal.pgen.1011249
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1011249
    Download Restriction: no

    File URL: https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1011249&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pgen.1011249?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tian Ge & Chia-Yen Chen & Yang Ni & Yen-Chen Anne Feng & Jordan W. Smoller, 2019. "Polygenic prediction via Bayesian regression and continuous shrinkage priors," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    2. Luke R. Lloyd-Jones & Jian Zeng & Julia Sidorenko & Loïc Yengo & Gerhard Moser & Kathryn E. Kemper & Huanwei Wang & Zhili Zheng & Reedik Magi & Tõnu Esko & Andres Metspalu & Naomi R. Wray & Michael E., 2019. "Improved polygenic prediction by Bayesian multiple regression on summary statistics," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song Zhai & Hong Zhang & Devan V. Mehrotra & Judong Shen, 2022. "Pharmacogenomics polygenic risk score for drug response prediction using PRS-PGx methods," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Rikifumi Ohta & Yosuke Tanigawa & Yuta Suzuki & Manolis Kellis & Shinichi Morishita, 2024. "A polygenic score method boosted by non-additive models," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Geyu Zhou & Hongyu Zhao, 2021. "A fast and robust Bayesian nonparametric method for prediction of complex traits using summary statistics," PLOS Genetics, Public Library of Science, vol. 17(7), pages 1-17, July.
    4. Carla Márquez-Luna & Steven Gazal & Po-Ru Loh & Samuel S. Kim & Nicholas Furlotte & Adam Auton & Alkes L. Price, 2021. "Incorporating functional priors improves polygenic prediction accuracy in UK Biobank and 23andMe data sets," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    5. Yosuke Tanigawa & Junyang Qian & Guhan Venkataraman & Johanne Marie Justesen & Ruilin Li & Robert Tibshirani & Trevor Hastie & Manuel A Rivas, 2022. "Significant sparse polygenic risk scores across 813 traits in UK Biobank," PLOS Genetics, Public Library of Science, vol. 18(3), pages 1-21, March.
    6. Chachrit Khunsriraksakul & Qinmengge Li & Havell Markus & Matthew T. Patrick & Renan Sauteraud & Daniel McGuire & Xingyan Wang & Chen Wang & Lida Wang & Siyuan Chen & Ganesh Shenoy & Bingshan Li & Xue, 2023. "Multi-ancestry and multi-trait genome-wide association meta-analyses inform clinical risk prediction for systemic lupus erythematosus," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    7. Junyang Qian & Yosuke Tanigawa & Wenfei Du & Matthew Aguirre & Chris Chang & Robert Tibshirani & Manuel A Rivas & Trevor Hastie, 2020. "A fast and scalable framework for large-scale and ultrahigh-dimensional sparse regression with application to the UK Biobank," PLOS Genetics, Public Library of Science, vol. 16(10), pages 1-30, October.
    8. Clara Albiñana & Zhihong Zhu & Andrew J. Schork & Andrés Ingason & Hugues Aschard & Isabell Brikell & Cynthia M. Bulik & Liselotte V. Petersen & Esben Agerbo & Jakob Grove & Merete Nordentoft & David , 2023. "Multi-PGS enhances polygenic prediction by combining 937 polygenic scores," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Wei Jiang & Ling Chen & Matthew J. Girgenti & Hongyu Zhao, 2024. "Tuning parameters for polygenic risk score methods using GWAS summary statistics from training data," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    10. Mitchell, Brittany L. & Hansell, Narelle K. & McAloney, Kerrie & Martin, Nicholas G. & Wright, Margaret J. & Renteria, Miguel E. & Grasby, Katrina L., 2022. "Polygenic influences associated with adolescent cognitive skills," Intelligence, Elsevier, vol. 94(C).
    11. Brittany L. Mitchell & Jake R. Saklatvala & Nick Dand & Fiona A. Hagenbeek & Xin Li & Josine L. Min & Laurent Thomas & Meike Bartels & Jouke Hottenga & Michelle K. Lupton & Dorret I. Boomsma & Xianjun, 2022. "Genome-wide association meta-analysis identifies 29 new acne susceptibility loci," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    12. Zichen Zhang & Ye Eun Bae & Jonathan R. Bradley & Lang Wu & Chong Wu, 2022. "SUMMIT: An integrative approach for better transcriptomic data imputation improves causal gene identification," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    13. Chen Wang & Havell Markus & Avantika R. Diwadkar & Chachrit Khunsriraksakul & Laura Carrel & Bingshan Li & Xue Zhong & Xingyan Wang & Xiaowei Zhan & Galen T. Foulke & Nancy J. Olsen & Dajiang J. Liu &, 2025. "Integrating electronic health records and GWAS summary statistics to predict the progression of autoimmune diseases from preclinical stages," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    14. Yash Patel & Jean Shin & Eeva Sliz & Ariana Tang & Aniket Mishra & Rui Xia & Edith Hofer & Hema Sekhar Reddy Rajula & Ruiqi Wang & Frauke Beyer & Katrin Horn & Max Riedl & Jing Yu & Henry Völzke & Rob, 2024. "Genetic risk factors underlying white matter hyperintensities and cortical atrophy," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    15. Zhen Qiao & Julia Sidorenko & Joana A. Revez & Angli Xue & Xueling Lu & Katri Pärna & Harold Snieder & Peter M. Visscher & Naomi R. Wray & Loic Yengo, 2023. "Estimation and implications of the genetic architecture of fasting and non-fasting blood glucose," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    16. Ruoyu Tian & Tian Ge & Hyeokmoon Kweon & Daniel B. Rocha & Max Lam & Jimmy Z. Liu & Kritika Singh & Daniel F. Levey & Joel Gelernter & Murray B. Stein & Ellen A. Tsai & Hailiang Huang & Christopher F., 2024. "Whole-exome sequencing in UK Biobank reveals rare genetic architecture for depression," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    17. Tuomo Hartonen & Bradley Jermy & Hanna Sõnajalg & Pekka Vartiainen & Kristi Krebs & Andrius Vabalas & Tuija Leino & Hanna Nohynek & Jonas Sivelä & Reedik Mägi & Mark Daly & Hanna M. Ollila & Lili Mila, 2023. "Nationwide health, socio-economic and genetic predictors of COVID-19 vaccination status in Finland," Nature Human Behaviour, Nature, vol. 7(7), pages 1069-1083, July.
    18. James P. Pirruccello & Paolo Achille & Seung Hoan Choi & Joel T. Rämö & Shaan Khurshid & Mahan Nekoui & Sean J. Jurgens & Victor Nauffal & Shinwan Kany & Kenney Ng & Samuel F. Friedman & Puneet Batra , 2024. "Deep learning of left atrial structure and function provides link to atrial fibrillation risk," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    19. Mattia Cordioli & Andrea Corbetta & Hanna Maria Kariis & Sakari Jukarainen & Pekka Vartiainen & Tuomo Kiiskinen & Matteo Ferro & Markus Perola & Mikko Niemi & Samuli Ripatti & Kelli Lehto & Lili Milan, 2024. "Socio-demographic and genetic risk factors for drug adherence and persistence across 5 common medication classes," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    20. Sara J Cromer & Victoria Chen & Christopher Han & William Marshall & Shekina Emongo & Evelyn Greaux & Tim Majarian & Jose C Florez & Josep Mercader & Miriam S Udler, 2022. "Algorithmic identification of atypical diabetes in electronic health record (EHR) systems," PLOS ONE, Public Library of Science, vol. 17(12), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:1011249. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.