IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-62442-1.html
   My bibliography  Save this article

Revealing the interplay between decarbonisation, circularity, and cost-effectiveness in building energy renovation

Author

Listed:
  • Chunbo Zhang

    (Leiden University
    University College London)

  • Mingming Hu

    (Leiden University)

  • Benjamin Sprecher

    (Leiden University
    Delft University of Technology)

  • Romain Sacchi

    (Paul Scherrer Institut)

  • Xining Yang

    (Leiden University)

  • Shiyu Yang

    (Xi’an Jiaotong University)

  • Teun Johannes Verhagen

    (Leiden University
    Delft University of Technology)

  • Chi Zhang

    (University College London)

  • Bernhard Steubing

    (Leiden University)

  • Arnold Tukker

    (Leiden University
    Netherlands Organization for Applied Scientific Research TNO)

Abstract

Building energy renovation mitigates carbon emissions but often increases material demand and financial costs. This work addresses this problem by investigating the carbon, material, and economic footprints of various renovation scenarios in the Dutch residential sector from 2015 to 2050. Results show that, compared to the baseline, façade refurbishment could lower cumulative lifecycle emissions by up to 0.3%, while raising material use by 21–25% and costs by 2–6%. Sensitivity analysis indicates that refurbishing the heating system offers greater potential for reducing carbon emissions. Rebuilding could cut emissions by up to 17% under an ambitious energy transition, though this would triple material use and construction costs. Circularity strategies could offset up to 89% of the material footprint and reduce carbon emissions by up to 23%. Nonetheless, considerable cost increases from renovations remain inevitable, even with advanced material circulation systems, suggesting circular renovation strategies with enhanced incentives as concerted action.

Suggested Citation

  • Chunbo Zhang & Mingming Hu & Benjamin Sprecher & Romain Sacchi & Xining Yang & Shiyu Yang & Teun Johannes Verhagen & Chi Zhang & Bernhard Steubing & Arnold Tukker, 2025. "Revealing the interplay between decarbonisation, circularity, and cost-effectiveness in building energy renovation," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62442-1
    DOI: 10.1038/s41467-025-62442-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-62442-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-62442-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Roland Geyer & Brandon Kuczenski & Trevor Zink & Ashley Henderson, 2016. "Common Misconceptions about Recycling," Journal of Industrial Ecology, Yale University, vol. 20(5), pages 1010-1017, October.
    2. Chunbo Zhang & Mingming Hu & Xining Yang & Arianna Amati & Arnold Tukker, 2020. "Life cycle greenhouse gas emission and cost analysis of prefabricated concrete building façade elements," Journal of Industrial Ecology, Yale University, vol. 24(5), pages 1016-1030, October.
    3. Zhang, Chunbo & Hu, Mingming & Laclau, Benjamin & Garnesson, Thomas & Yang, Xining & Tukker, Arnold, 2021. "Energy-carbon-investment payback analysis of prefabricated envelope-cladding system for building energy renovation: Cases in Spain, the Netherlands, and Sweden," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    4. Teun Johannes Verhagen & Ester van der Voet & Benjamin Sprecher, 2021. "Alternatives for natural‐gas‐based heating systems: A quantitative GIS‐based analysis of climate impacts and financial feasibility," Journal of Industrial Ecology, Yale University, vol. 25(1), pages 219-232, February.
    5. Trevor Zink & Roland Geyer & Richard Startz, 2016. "A Market-Based Framework for Quantifying Displaced Production from Recycling or Reuse," Journal of Industrial Ecology, Yale University, vol. 20(4), pages 719-729, August.
    6. Manfred Lenzen, 2000. "Errors in Conventional and Input‐Output—based Life—Cycle Inventories," Journal of Industrial Ecology, Yale University, vol. 4(4), pages 127-148, October.
    7. Pedinotti-Castelle, Marianne & Astudillo, Miguel F. & Pineau, Pierre-Olivier & Amor, Ben, 2019. "Is the environmental opportunity of retrofitting the residential sector worth the life cycle cost? A consequential assessment of a typical house in Quebec," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 428-439.
    8. Clemens Mostert & Stefan Bringezu, 2019. "Measuring Product Material Footprint as New Life Cycle Impact Assessment Method: Indicators and Abiotic Characterization Factors," Resources, MDPI, vol. 8(2), pages 1-19, April.
    9. Sacchi, R. & Bauer, C. & Cox, B. & Mutel, C., 2022. "When, where and how can the electrification of passenger cars reduce greenhouse gas emissions?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    10. Kirchherr, Julian & Reike, Denise & Hekkert, Marko, 2017. "Conceptualizing the circular economy: An analysis of 114 definitions," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 221-232.
    11. Bridge, Gavin & Bouzarovski, Stefan & Bradshaw, Michael & Eyre, Nick, 2013. "Geographies of energy transition: Space, place and the low-carbon economy," Energy Policy, Elsevier, vol. 53(C), pages 331-340.
    12. Ricardo Ramírez-Villegas & Ola Eriksson & Thomas Olofsson, 2019. "Life Cycle Assessment of Building Renovation Measures–Trade-off between Building Materials and Energy," Energies, MDPI, vol. 12(3), pages 1-15, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xavier Tanguay & Gatien Geraud Essoua Essoua & Ben Amor, 2021. "Attributional and consequential life cycle assessments in a circular economy with integration of a quality indicator: A case study of cascading wood products," Journal of Industrial Ecology, Yale University, vol. 25(6), pages 1462-1473, December.
    2. Erik G. Hansen & Ferdinand Revellio, 2020. "Circular value creation architectures: Make, ally, buy, or laissez‐faire," Journal of Industrial Ecology, Yale University, vol. 24(6), pages 1250-1273, December.
    3. Sourabh Jain & Jury Gualandris, 2023. "When does upcycling mitigate climate change? The case of wet spent grains and fruit and vegetable residues in Canada," Journal of Industrial Ecology, Yale University, vol. 27(2), pages 522-534, April.
    4. Balint Horvath & Miriam Bahna & Csaba Fogarassy, 2019. "The Ecological Criteria of Circular Growth and the Rebound Risk of Closed Loops," Sustainability, MDPI, vol. 11(10), pages 1-15, May.
    5. Cris Garcia-Saravia Ortiz-de-Montellano & Yvonne Meer, 2022. "A Theoretical Framework for Circular Processes and Circular Impacts Through a Comprehensive Review of Indicators," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 23(2), pages 291-314, June.
    6. Lima, Ana T. & Kirkelund, Gunvor M. & Lu, Zheng & Mao, Ruichang & Kunther, Wolfgang & Rode, Carsten & Slabik, Simon & Hafner, Annette & Sameer, Husam & Dürr, Hans H. & Flörke, Martina & Lowe, Benjamin, 2024. "Mapping circular economy practices for steel, cement, glass, brick, insulation, and wood – A review for climate mitigation modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    7. Christoph Helbig & Jonas Huether & Charlotte Joachimsthaler & Christian Lehmann & Simone Raatz & Andrea Thorenz & Martin Faulstich & Axel Tuma, 2022. "A terminology for downcycling," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1164-1174, August.
    8. Andreas Mayer & Willi Haas & Dominik Wiedenhofer & Fridolin Krausmann & Philip Nuss & Gian Andrea Blengini, 2019. "Measuring Progress towards a Circular Economy: A Monitoring Framework for Economy‐wide Material Loop Closing in the EU28," Journal of Industrial Ecology, Yale University, vol. 23(1), pages 62-76, February.
    9. Caroline Samberger & Sanaz Imen & Katerina Messologitis & Arthur Umble & Joseph G. Jacangelo, 2024. "Assessing circularity of wastewater treatment systems: A critical review of indicators," Journal of Industrial Ecology, Yale University, vol. 28(2), pages 262-276, April.
    10. John Ryter & Xinkai Fu & Karan Bhuwalka & Richard Roth & Elsa Olivetti, 2022. "Assessing recycling, displacement, and environmental impacts using an economics‐informed material system model," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 1010-1024, June.
    11. Ida Karlsson & Johan Rootzén & Alla Toktarova & Mikael Odenberger & Filip Johnsson & Lisa Göransson, 2020. "Roadmap for Decarbonization of the Building and Construction Industry—A Supply Chain Analysis Including Primary Production of Steel and Cement," Energies, MDPI, vol. 13(16), pages 1-40, August.
    12. Patricia Schneider-Marin & Anne Winkelkotte & Werner Lang, 2022. "Integrating Environmental and Economic Perspectives in Building Design," Sustainability, MDPI, vol. 14(8), pages 1-27, April.
    13. Shalinee Sourabh & Balagopal G. Menon & Biswajit Mahanty, 2024. "Econometric analysis of circular economy co-flow process in metal industry," Quality & Quantity: International Journal of Methodology, Springer, vol. 58(2), pages 1583-1602, April.
    14. Edis Glogic & Guido Sonnemann & Steven B. Young, 2021. "Environmental Trade-Offs of Downcycling in Circular Economy: Combining Life Cycle Assessment and Material Circularity Indicator to Inform Circularity Strategies for Alkaline Batteries," Sustainability, MDPI, vol. 13(3), pages 1-12, January.
    15. Pina Puntillo, 2023. "Circular economy business models: Towards achieving sustainable development goals in the waste management sector—Empirical evidence and theoretical implications," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 30(2), pages 941-954, March.
    16. Tina Wiegand & Martin Wynn, 2023. "Sustainability, the Circular Economy and Digitalisation in the German Textile and Clothing Industry," Sustainability, MDPI, vol. 15(11), pages 1-30, June.
    17. Zhai, Jihua & Burke, Ian T. & Stewart, Douglas I., 2021. "Beneficial management of biomass combustion ashes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    18. Abdulmajeed Almadhi & Abdelhakim Abdelhadi & Rakan Alyamani, 2023. "Moving from Linear to Circular Economy in Saudi Arabia: Life-Cycle Assessment on Plastic Waste Management," Sustainability, MDPI, vol. 15(13), pages 1-22, July.
    19. Sergio Cappucci & Serena Nappi & Andrea Cappelli, 2022. "Green Public Areas and Urban Open Spaces Management: New GreenCAL Tool Algorithms and Circular Economy Implications," Land, MDPI, vol. 11(6), pages 1-25, June.
    20. Wiegand, Julia, 2017. "Dezentrale Stromerzeugung als Chance zur Stärkung der Energie-Resilienz: Eine qualitative Analyse kommunaler Strategien im Raum Unna," Wuppertaler Studienarbeiten zur nachhaltigen Entwicklung, Wuppertal Institute for Climate, Environment and Energy, volume 11, number 11.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62442-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.