IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-62322-8.html
   My bibliography  Save this article

Sorting polymerization in a bichannel metal-organic framework

Author

Listed:
  • Keat Beamsley

    (The University of Tokyo)

  • Nobuhiko Hosono

    (The University of Tokyo)

  • Takashi Uemura

    (The University of Tokyo)

Abstract

Accomplishing multiple synthetic tasks in parallel, including substrate capture, separation, and reaction, along with controlled arrangement of product, all in one system has remained a long-standing challenge in synthetic chemistry. Here, we report a sorting polymerization strategy that harnesses the multifunctional nature of a bichannel metal-organic framework (MOF). The MOF, [Cu(5-methylisophthalate)]n, featuring two distinct one-dimensional channels arranged in a single Kagome lattice, allows selective adsorption of monomers to different sites based on their polarity and size. This enables the sorting of different vinyl monomers and their in-situ parallel homo-polymerization within the respective channels. The process produces alternating single-chain arrays of homopolymers in a single step, a configuration unattainable by conventional approaches. Additionally, the introduction of inter-chain cross-linking allows for the isolation of the binary polymer array by removing the MOF template. This work highlights the potential of MOFs as versatile reaction platforms for the synthesis of complex, well-ordered molecular architectures from chaotic mixtures of raw materials.

Suggested Citation

  • Keat Beamsley & Nobuhiko Hosono & Takashi Uemura, 2025. "Sorting polymerization in a bichannel metal-organic framework," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62322-8
    DOI: 10.1038/s41467-025-62322-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-62322-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-62322-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Thomas M. McDonald & Jarad A. Mason & Xueqian Kong & Eric D. Bloch & David Gygi & Alessandro Dani & Valentina Crocellà & Filippo Giordanino & Samuel O. Odoh & Walter S. Drisdell & Bess Vlaisavljevich , 2015. "Cooperative insertion of CO2 in diamine-appended metal-organic frameworks," Nature, Nature, vol. 519(7543), pages 303-308, March.
    2. Yong-Sheng Wei & Mei Zhang & Pei-Qin Liao & Rui-Biao Lin & Tai-Yang Li & Guang Shao & Jie-Peng Zhang & Xiao-Ming Chen, 2015. "Coordination templated [2+2+2] cyclotrimerization in a porous coordination framework," Nature Communications, Nature, vol. 6(1), pages 1-7, December.
    3. Takashi Uemura & Tetsuya Kaseda & Yotaro Sasaki & Munehiro Inukai & Takaaki Toriyama & Atsushi Takahara & Hiroshi Jinnai & Susumu Kitagawa, 2015. "Mixing of immiscible polymers using nanoporous coordination templates," Nature Communications, Nature, vol. 6(1), pages 1-8, November.
    4. Yan Su & Ken-ichi Otake & Jia-Jia Zheng & Satoshi Horike & Susumu Kitagawa & Cheng Gu, 2022. "Separating water isotopologues using diffusion-regulatory porous materials," Nature, Nature, vol. 611(7935), pages 289-294, November.
    5. Nobuhiko Hosono & Shuto Mochizuki & Yuki Hayashi & Takashi Uemura, 2020. "Unimolecularly thick monosheets of vinyl polymers fabricated in metal–organic frameworks," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Narukulla, Ramesh & Chaturvedi, Krishna Raghav & Ojha, Umaprasana & Sharma, Tushar, 2022. "Carbon dioxide capturing evaluation of polyacryloyl hydrazide solutions via rheological analysis for carbon utilization applications," Energy, Elsevier, vol. 241(C).
    2. Hongyi Tu & Tong Wang & Min Chen & Limin Wu, 2025. "Isotope-driven hydrogel smart windows for self-adaptive thermoregulation," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    3. Jin-Sheng Zou & Zhi-Peng Wang & Yassin H. Andaloussi & Jiapeng Xue & Wanli Zhang & Bryan E. G. Lucier & Zeyang Zhang & Yanan Jia & Xue-Cui Wu & Jiahan Li & Yining Huang & Michael J. Zaworotko & Guangj, 2025. "Benchmarking selective capture of trace CO2 from C2H2 using an amine-functionalized adsorbent," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    4. Chen, S. & Shi, W.K. & Yong, J.Y. & Zhuang, Y. & Lin, Q.Y. & Gao, N. & Zhang, X.J. & Jiang, L., 2023. "Numerical study on a structured packed adsorption bed for indoor direct air capture," Energy, Elsevier, vol. 282(C).
    5. Irani, Maryam & Jacobson, Andrew T. & Gasem, Khaled A.M. & Fan, Maohong, 2018. "Facilely synthesized porous polymer as support of poly(ethyleneimine) for effective CO2 capture," Energy, Elsevier, vol. 157(C), pages 1-9.
    6. Ga, Seongbin & An, Nahyeon & Lee, Gi Yeol & Joo, Chonghyo & Kim, Junghwan, 2024. "Multidisciplinary high-throughput screening of metal–organic framework for ammonia-based green hydrogen production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    7. Ryusuke Futamura & Taku Iiyama & Takahiro Ueda & Patrick A. Bonnaud & François-Xavier Coudert & Ayumi Furuse & Hideki Tanaka & Roland J. -M. Pellenq & Katsumi Kaneko, 2024. "Staggered structural dynamic-mediated selective adsorption of H2O/D2O on flexible graphene oxide nanosheets," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    8. Shamim, Jubair A. & Nawaz, Kashif & Hu, Ming-Hsuan & Pasqualin, Paris & Krishnan, Easwaran N. & Kowalski, Stephen P. & Bhowmik, Palash Kumar & Parameshwaran, Rajagopalan & Hsu, Wei-Lun & Hwang, Yunho , 2025. "Review of the potential and challenges of MOF-based adsorption heat pumps for sustainable cooling and heating in the buildings," Energy, Elsevier, vol. 323(C).
    9. Guang-Rui Si & Xiang-Jing Kong & Tao He & Zhengqing Zhang & Jian-Rong Li, 2024. "Simultaneous capture of trace benzene and SO2 in a robust Ni(II)-pyrazolate framework," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    10. Zhu, Xuancan & Ge, Tianshu & Yang, Fan & Wang, Ruzhu, 2021. "Design of steam-assisted temperature vacuum-swing adsorption processes for efficient CO2 capture from ambient air," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    11. Tian Wang & Aliakbar Hassanpouryouzband & Mengge Fan & Chalachew Mebrahtu & Lunxiang Zhang & Yongchen Song, 2025. "Organic magnetic nanoparticles catalyze CO2 capture in hydrogen-bonded nanocages via water-driven crystallization," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    12. Yao Fu & Yifeng Yao & Alexander C. Forse & Jianhua Li & Kenji Mochizuki & Jeffrey R. Long & Jeffrey A. Reimer & Gaël Paëpe & Xueqian Kong, 2023. "Solvent-derived defects suppress adsorption in MOF-74," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    13. Yan Su & Ken-ichi Otake & Jia-Jia Zheng & Ping Wang & Qing Lin & Susumu Kitagawa & Cheng Gu, 2024. "Diffusion-rate sieving of propylene and propane mixtures in a cooperatively dynamic porous crystal," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62322-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.