IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-62079-0.html
   My bibliography  Save this article

KNN-based frequency-adjustable ferroelectric heterojunction and biomedical applications

Author

Listed:
  • Tao Zhang

    (Huazhong University of Science and Technology)

  • Haoyuan Hu

    (Renmin Hospital of Wuhan University
    Wuhan University)

  • Hong Jiang

    (Renmin Hospital of Wuhan University
    Wuhan University)

  • Zhen Wang

    (National Institutes of Health (NIH))

  • Jinfeng Lin

    (Tongji University)

  • Ye Cheng

    (Renmin Hospital of Wuhan University
    Wuhan University)

  • Wei Guo

    (Renmin Hospital of Wuhan University
    Wuhan University)

  • Di Ke

    (Huazhong University of Science and Technology)

  • Hai Hang

    (Huazhong University of Science and Technology)

  • Mengshu Ta

    (Huazhong University of Science and Technology)

  • Jun Ou-Yang

    (Huazhong University of Science and Technology)

  • Jiwei Zhai

    (Tongji University)

  • Xiaofei Yang

    (Huazhong University of Science and Technology)

  • Songyun Wang

    (Renmin Hospital of Wuhan University
    Wuhan University)

  • Benpeng Zhu

    (Huazhong University of Science and Technology)

Abstract

High-performance lead-free K0.5Na0.5NbO3 piezoelectric ceramics present a practical alternative to lead-containing counterparts by effectively reducing potential environmental hazards. This advancement is particularly relevant to the development of ferroelectric heterojunction devices for biomedical applications. Here, we design and fabricate a frequency-adjustable ferroelectric heterojunction based on the developed K0.5Na0.5NbO3 piezoelectric ceramics with a high piezoelectric coefficient (d33 = 680 pC/N). By leveraging flexible encapsulation, the heterojunction achieves miniaturization (φ = 13.3 mm, h = 2.28 mm) and suitability for implantation. After penetrating the rat skull, the ultrasound generated by the heterojunction at a frequency of 3 MHz reaches a focal depth of about 7.9 mm, a focal width of approximately 480 μm at −6 dB, and millimeter-scale continuous focal tuning (1.5 mm) within a narrow frequency range (2.7–3.3 MHz). Additionally, the implanted heterojunction enables long-term and high-precision transcranial neuromodulation, and consequently yields therapeutic effects in a myocardial infarction animal model. Collectively, this study highlights a viable strategy for developing and applying lead-free ferroelectric heterojunctions, expanding their potential in brain modulation, and providing new insights into clinical treatments of myocardial infarction.

Suggested Citation

  • Tao Zhang & Haoyuan Hu & Hong Jiang & Zhen Wang & Jinfeng Lin & Ye Cheng & Wei Guo & Di Ke & Hai Hang & Mengshu Ta & Jun Ou-Yang & Jiwei Zhai & Xiaofei Yang & Songyun Wang & Benpeng Zhu, 2025. "KNN-based frequency-adjustable ferroelectric heterojunction and biomedical applications," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62079-0
    DOI: 10.1038/s41467-025-62079-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-62079-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-62079-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jackson N. Cagle & Tiberio de Araujo & Kara A. Johnson & John Yu & Lauren Fanty & Filipe P. Sarmento & Simon Little & Michael S. Okun & Joshua K. Wong & Coralie de Hemptinne, 2024. "Chronic intracranial recordings in the globus pallidus reveal circadian rhythms in Parkinson’s disease," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Ye Yang & Yaozhang Yang & Dingyuan Liu & Yuanyuan Wang & Minqiao Lu & Qi Zhang & Jiqing Huang & Yongchuan Li & Teng Ma & Fei Yan & Hairong Zheng, 2023. "In-vivo programmable acoustic manipulation of genetically engineered bacteria," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Zong-Lin Li & Kun Chen & Fei Li & Zhi-Jun Shi & Qi-Li Sun & Peng-Qi Li & Yu-Gui Peng & Lai-Xin Huang & Guang Yang & Hairong Zheng & Xue-Feng Zhu, 2023. "Decorated bacteria-cellulose ultrasonic metasurface," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Sangjin Yoo & David R. Mittelstein & Robert C. Hurt & Jerome Lacroix & Mikhail G. Shapiro, 2022. "Focused ultrasound excites cortical neurons via mechanosensitive calcium accumulation and ion channel amplification," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Laiming Jiang & Gengxi Lu & Yushun Zeng & Yizhe Sun & Haochen Kang & James Burford & Chen Gong & Mark S. Humayun & Yong Chen & Qifa Zhou, 2022. "Flexible ultrasound-induced retinal stimulating piezo-arrays for biomimetic visual prostheses," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    6. Siti N. Yaakub & Tristan A. White & Jamie Roberts & Eleanor Martin & Lennart Verhagen & Charlotte J. Stagg & Stephen Hall & Elsa F. Fouragnan, 2023. "Transcranial focused ultrasound-mediated neurochemical and functional connectivity changes in deep cortical regions in humans," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    7. Haotian Lu & Huachen Cui & Gengxi Lu & Laiming Jiang & Ryan Hensleigh & Yushun Zeng & Adnan Rayes & Mohanchandra K. Panduranga & Megha Acharya & Zhen Wang & Andrei Irimia & Felix Wu & Gregory P. Carma, 2023. "3D Printing and processing of miniaturized transducers with near-pristine piezoelectric ceramics for localized cavitation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Yasuyoshi Saito & Hisaaki Takao & Toshihiko Tani & Tatsuhiko Nonoyama & Kazumasa Takatori & Takahiko Homma & Toshiatsu Nagaya & Masaya Nakamura, 2004. "Lead-free piezoceramics," Nature, Nature, vol. 432(7013), pages 84-87, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eleanor Martin & Morgan Roberts & Ioana F. Grigoras & Olivia Wright & Tulika Nandi & Sebastian W. Rieger & Jon Campbell & Tim Boer & Ben T. Cox & Charlotte J. Stagg & Bradley E. Treeby, 2025. "Ultrasound system for precise neuromodulation of human deep brain circuits," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    2. Joshua Kosnoff & Kai Yu & Chang Liu & Bin He, 2024. "Transcranial focused ultrasound to V5 enhances human visual motion brain-computer interface by modulating feature-based attention," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    3. Ghazaleh Darmani & Hamidreza Ramezanpour & Can Sarica & Regina Annirood & Talyta Grippe & Jean-Francois Nankoo & Anton Fomenko & Brendan Santyr & Ke Zeng & Artur Vetkas & Nardin Samuel & Benjamin Davi, 2025. "Individualized non-invasive deep brain stimulation of the basal ganglia using transcranial ultrasound stimulation," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    4. Shiyuan Liu & Ying Hong & Wang Hong & Yi Zheng & Xiaodan Yang & Xuemu Li & Zhuomin Zhang & Xiaodong Yan & Yao Shan & Weikang Lin & Zehua Peng & Xingqi Zhang & Xi Yao & Zuankai Wang & Zhengbao Yang, 2024. "Stress-eliminated liquid-phase fabrication of colloidal films above the critical crack thickness," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Jeder, Khawla & Bouhamed, Ayda & Nouri, Hanen & Abdelmoula, Najmeddine & Jöhrmann, Nathanael & Wunderle, Bernhard & Khemakhem, Hamadi & Kanoun, Olfa, 2022. "Enhancement of the performance of flexible lead-free nanogenerators by doping in BaTiO3 nanoparticles," Energy, Elsevier, vol. 261(PB).
    6. Mao-Hua Zhang & Chen Shen & Changhao Zhao & Mian Dai & Fang-Zhou Yao & Bo Wu & Jian Ma & Hu Nan & Dawei Wang & Qibin Yuan & Lucas Lemos Silva & Lovro Fulanović & Alexander Schökel & Peitao Liu & Hongb, 2022. "Deciphering the phase transition-induced ultrahigh piezoresponse in (K,Na)NbO3-based piezoceramics," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Ruian Zhang & Chen Lin & Hongliang Dong & Haojie Han & Yu Song & Yiran Sun & Yue Wang & Zijun Zhang & Xiaohe Miao & Yongjun Wu & Zhe Ren & Qiaoshi Zeng & Houbing Huang & Jing Ma & He Tian & Zhaohui Re, 2025. "Compositionally-graded ferroelectric thin films by solution epitaxy produce excellent dielectric stability," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    8. Jason F. Hou & Md Osman Goni Nayeem & Kian A. Caplan & Evan A. Ruesch & Albit Caban-Murillo & Ernesto Criado-Hidalgo & Sarah B. Ornellas & Brandon Williams & Ayeilla A. Pearce & Huseyin E. Dagdeviren , 2024. "An implantable piezoelectric ultrasound stimulator (ImPULS) for deep brain activation," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    9. Hangfeng Zhang & Zilong Li & Yichen Wang & A. Dominic Fortes & Theo Graves Saunders & Yang Hao & Isaac Abrahams & Haixue Yan & Lei Su, 2025. "Phase transformation in lead titanate based relaxor ferroelectrics with ultra-high strain," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    10. Filip Ivanovski & Maja Meško & Tina Lebar & Marko Rupnik & Duško Lainšček & Miha Gradišek & Roman Jerala & Mojca Benčina, 2024. "Ultrasound-mediated spatial and temporal control of engineered cells in vivo," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    11. Yongke Yan & Liwei D. Geng & Hairui Liu & Haoyang Leng & Xiaotian Li & Yu U. Wang & Shashank Priya, 2022. "Near-ideal electromechanical coupling in textured piezoelectric ceramics," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    12. Xuandi Hou & Jianing Jing & Yizhou Jiang & Xiaohui Huang & Quanxiang Xian & Ting Lei & Jiejun Zhu & Kin Fung Wong & Xinyi Zhao & Min Su & Danni Li & Langzhou Liu & Zhihai Qiu & Lei Sun, 2024. "Nanobubble-actuated ultrasound neuromodulation for selectively shaping behavior in mice," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    13. Jinfeng Lin & Jin Qian & Guanglong Ge & Yuxuan Yang & Jiangfan Li & Xiao Wu & Guohui Li & Simin Wang & Yingchun Liu & Jialiang Zhang & Jiwei Zhai & Xiaoming Shi & Haijun Wu, 2024. "Multiscale reconfiguration induced highly saturated poling in lead-free piezoceramics for giant energy conversion," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    14. Jia-Qi Luo & Hai-Feng Lu & Yi-Jing Nie & Yu-Hang Zhou & Chang-Feng Wang & Zhi-Xu Zhang & Da-Wei Fu & Yi Zhang, 2024. "Porous flexible molecular-based piezoelectric composite achieves milliwatt output power density," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    15. Siti N. Yaakub & Tristan A. White & Jamie Roberts & Eleanor Martin & Lennart Verhagen & Charlotte J. Stagg & Stephen Hall & Elsa F. Fouragnan, 2023. "Transcranial focused ultrasound-mediated neurochemical and functional connectivity changes in deep cortical regions in humans," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    16. Wei Feng & Bingcheng Luo & Shuaishuai Bian & Enke Tian & Zili Zhang & Ahmed Kursumovic & Judith L. MacManus-Driscoll & Xiaohui Wang & Longtu Li, 2022. "Heterostrain-enabled ultrahigh electrostrain in lead-free piezoelectric," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    17. Yonghao Yao & Hui Liu & Yihao Hu & Kaustuv Datta & Jiagang Wu & Yuanpeng Zhang & Matthew G. Tucker & Shi Liu & Joerg C. Neuefeind & Shujun Zhang & Jun Chen, 2025. "Fluctuating local polarization: a generic fingerprint for enhanced piezoelectricity in Pb-based and Pb-free perovskite ferroelectrics," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    18. Zhen Wang & Ryan Hensleigh & Zhenpeng Xu & Junbo Wang & James JuYoung Park & Anastasios Papathanasopoulos & Yahya Rahmat-Samii & Xiaoyu Zheng, 2025. "Ultra-light antennas via charge programmed deposition additive manufacturing," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    19. Mengru Zhang & Binjie Jin & Youlong Hua & Zhan Zhu & Dan Xu & Zheng Fan & Qian Zhao & Jian Chen & Tao Xie, 2025. "Reconfigurable dynamic acoustic holography with acoustically transparent and programmable metamaterial," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    20. Liang Chen & Shiqing Deng & Hui Liu & Jie Wu & He Qi & Jun Chen, 2022. "Giant energy-storage density with ultrahigh efficiency in lead-free relaxors via high-entropy design," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62079-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.