IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-57883-7.html
   My bibliography  Save this article

Individualized non-invasive deep brain stimulation of the basal ganglia using transcranial ultrasound stimulation

Author

Listed:
  • Ghazaleh Darmani

    (University Health Network
    University of Toronto)

  • Hamidreza Ramezanpour

    (York University)

  • Can Sarica

    (University Health Network
    University of Toronto)

  • Regina Annirood

    (University Health Network)

  • Talyta Grippe

    (University Health Network)

  • Jean-Francois Nankoo

    (University Health Network)

  • Anton Fomenko

    (University of Toronto)

  • Brendan Santyr

    (University of Toronto)

  • Ke Zeng

    (University Health Network
    Beijing Normal University)

  • Artur Vetkas

    (University of Toronto)

  • Nardin Samuel

    (University of Toronto)

  • Benjamin Davidson

    (University of Toronto)

  • Alfonso Fasano

    (University Health Network
    University of Toronto
    University Health Network)

  • Milad Lankarany

    (University Health Network)

  • Suneil K. Kalia

    (University Health Network
    University of Toronto)

  • Samuel Pichardo

    (University of Calgary)

  • Andres M. Lozano

    (University Health Network
    University of Toronto)

  • Robert Chen

    (University Health Network
    University of Toronto
    University Health Network)

Abstract

Transcranial ultrasound stimulation (TUS) offers precise, non-invasive neuromodulation, though its impact on human deep brain structures remains underexplored. Here we examined TUS-induced changes in the basal ganglia of 10 individuals with movement disorders (Parkinson’s disease and dystonia) and 15 healthy participants. Local field potentials were recorded using deep brain stimulation (DBS) leads in the globus pallidus internus (GPi). Compared to sham, theta burst TUS (tbTUS) increased theta power during stimulation, while 10 Hz TUS enhanced beta power, with effects lasting up to 40 min. In healthy participants, a stop-signal task assessed tbTUS effects on the GPi, with pulvinar stimulation serving as an active sham. GPi TUS prolonged stop-signal reaction times, indicating impaired response inhibition, whereas pulvinar TUS had no effect. These findings provide direct electrophysiological evidence of TUS target engagement and specificity in deep brain structures, suggesting its potential as a noninvasive DBS strategy for neurological and psychiatric disorders.

Suggested Citation

  • Ghazaleh Darmani & Hamidreza Ramezanpour & Can Sarica & Regina Annirood & Talyta Grippe & Jean-Francois Nankoo & Anton Fomenko & Brendan Santyr & Ke Zeng & Artur Vetkas & Nardin Samuel & Benjamin Davi, 2025. "Individualized non-invasive deep brain stimulation of the basal ganglia using transcranial ultrasound stimulation," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57883-7
    DOI: 10.1038/s41467-025-57883-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-57883-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-57883-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kai Yu & Xiaodan Niu & Esther Krook-Magnuson & Bin He, 2021. "Intrinsic functional neuron-type selectivity of transcranial focused ultrasound neuromodulation," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    2. Sangjin Yoo & David R. Mittelstein & Robert C. Hurt & Jerome Lacroix & Mikhail G. Shapiro, 2022. "Focused ultrasound excites cortical neurons via mechanosensitive calcium accumulation and ion channel amplification," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Siti N. Yaakub & Tristan A. White & Jamie Roberts & Eleanor Martin & Lennart Verhagen & Charlotte J. Stagg & Stephen Hall & Elsa F. Fouragnan, 2023. "Transcranial focused ultrasound-mediated neurochemical and functional connectivity changes in deep cortical regions in humans," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joshua Kosnoff & Kai Yu & Chang Liu & Bin He, 2024. "Transcranial focused ultrasound to V5 enhances human visual motion brain-computer interface by modulating feature-based attention," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    2. Jason F. Hou & Md Osman Goni Nayeem & Kian A. Caplan & Evan A. Ruesch & Albit Caban-Murillo & Ernesto Criado-Hidalgo & Sarah B. Ornellas & Brandon Williams & Ayeilla A. Pearce & Huseyin E. Dagdeviren , 2024. "An implantable piezoelectric ultrasound stimulator (ImPULS) for deep brain activation," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    3. Ben Sorum & Trevor Docter & Vincent Panico & Robert A. Rietmeijer & Stephen G. Brohawn, 2024. "Tension activation of mechanosensitive two-pore domain K+ channels TRAAK, TREK-1, and TREK-2," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Filip Ivanovski & Maja Meško & Tina Lebar & Marko Rupnik & Duško Lainšček & Miha Gradišek & Roman Jerala & Mojca Benčina, 2024. "Ultrasound-mediated spatial and temporal control of engineered cells in vivo," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Fan Li & Jazlyn Gallego & Natasha N. Tirko & Jenna Greaser & Derek Bashe & Rudra Patel & Eric Shaker & Grace E. Valkenburg & Alanoud S. Alsubhi & Steven Wellman & Vanshika Singh & Camila Garcia Padill, 2024. "Low-intensity pulsed ultrasound stimulation (LIPUS) modulates microglial activation following intracortical microelectrode implantation," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    6. Guo, Yitong & Wang, Chunni & Ma, Jun, 2024. "Jointed pendulums driven by a neural circuit, electromechanical arm model approach," Chaos, Solitons & Fractals, Elsevier, vol. 189(P2).
    7. Xuandi Hou & Jianing Jing & Yizhou Jiang & Xiaohui Huang & Quanxiang Xian & Ting Lei & Jiejun Zhu & Kin Fung Wong & Xinyi Zhao & Min Su & Danni Li & Langzhou Liu & Zhihai Qiu & Lei Sun, 2024. "Nanobubble-actuated ultrasound neuromodulation for selectively shaping behavior in mice," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    8. Mertcan Han & Erdost Yildiz & Ugur Bozuyuk & Asli Aydin & Yan Yu & Aarushi Bhargava & Selcan Karaz & Metin Sitti, 2024. "Janus microparticles-based targeted and spatially-controlled piezoelectric neural stimulation via low-intensity focused ultrasound," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    9. Siti N. Yaakub & Tristan A. White & Jamie Roberts & Eleanor Martin & Lennart Verhagen & Charlotte J. Stagg & Stephen Hall & Elsa F. Fouragnan, 2023. "Transcranial focused ultrasound-mediated neurochemical and functional connectivity changes in deep cortical regions in humans," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57883-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.