IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-61448-z.html
   My bibliography  Save this article

Androgen receptor promotes arachidonic acid metabolism and angiogenic microenvironment in AFP-negative hepatocellular carcinoma

Author

Listed:
  • Zhilong Lin

    (The First Affiliated Hospital of Sun Yat-sen University)

  • Xiaofei Liu

    (Sun Yat-sen University)

  • Houwei Wang

    (The First Affiliated Hospital of Sun Yat-sen University)

  • Shumin Li

    (Sun Yat-sen University)

  • Ziqiang Miao

    (Sun Yat-sen University)

  • Jing Yang

    (Sun Yat-sen University)

  • Yuting Zhang

    (Sun Yat-sen University)

  • Kai Lei

    (The First Affiliated Hospital of Sun Yat-sen University)

  • Yifan Wu

    (Sun Yat-sen University)

  • Youmei Kang

    (Sun Yat-sen University)

  • Ruoyin Zheng

    (The First Affiliated Hospital of Sun Yat-sen University)

  • Zonglin Xie

    (Sun Yat-sen University)

  • Yixi Wen

    (Sun Yat-sen University)

  • Xiaoxue Ren

    (Sun Yat-sen University)

  • Chunxiao Liu

    (Sun Yat-sen University)

  • Alfred Sze-Lok Cheng

    (The Chinese University of Hong Kong)

  • Yubin Xie

    (Sun Yat-sen University)

  • Shuling Chen

    (Sun Yat-sen University
    Sun Yat-sen University)

  • Ming Kuang

    (The First Affiliated Hospital of Sun Yat-sen University
    Sun Yat-sen University)

  • Sui Peng

    (Sun Yat-sen University
    Sun Yat-sen University
    Sun Yat-sen University)

  • Zhenwei Peng

    (Sun Yat-sen University
    The First Affiliated Hospital of Sun Yat-sen University)

  • Zihao Dai

    (The First Affiliated Hospital of Sun Yat-sen University)

Abstract

Alpha-fetoprotein (AFP) is a classic biomarker for hepatocellular carcinoma (HCC). AFP-positive HCC (AFP+ HCC) has been intensively investigated; however, the genomic, transcriptomic and microenvironmental characteristics of AFP-negative HCC (AFP− HCC) remain to be deciphered. Here we show that tumors display mild differences in genetic alterations between AFP− HCC and AFP+ HCC patients, while AFP− HCC exhibits hyperactive arachidonic acid metabolism. Furthermore, the transcription activity of androgen receptor (AR) is significantly increased in AFP− HCC and plays a positive regulatory role in arachidonic acid metabolism and its metabolite 11,12-epoxyeicosatrienoic acid (11,12-EET). The tumor-derived 11,12-EET exhibits high affinity for EGFR that promotes the migration and tube formation of endothelial cells in vitro. Combination of lenvatinib and bicalutamide (an AR antagonist) enhances the therapeutic efficacy for AFP− HCC. Overall, we uncover the AR-mediated hyperactive arachidonic acid metabolism in AFP− HCC, and reveal AR-11,12-EET-EGFR axis-induced angiogenesis, providing a promising strategy of combined AR antagonist with lenvatinib for AFP− HCC treatment.

Suggested Citation

  • Zhilong Lin & Xiaofei Liu & Houwei Wang & Shumin Li & Ziqiang Miao & Jing Yang & Yuting Zhang & Kai Lei & Yifan Wu & Youmei Kang & Ruoyin Zheng & Zonglin Xie & Yixi Wen & Xiaoxue Ren & Chunxiao Liu & , 2025. "Androgen receptor promotes arachidonic acid metabolism and angiogenic microenvironment in AFP-negative hepatocellular carcinoma," Nature Communications, Nature, vol. 16(1), pages 1-20, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61448-z
    DOI: 10.1038/s41467-025-61448-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-61448-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-61448-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sonya A. MacParland & Jeff C. Liu & Xue-Zhong Ma & Brendan T. Innes & Agata M. Bartczak & Blair K. Gage & Justin Manuel & Nicholas Khuu & Juan Echeverri & Ivan Linares & Rahul Gupta & Michael L. Cheng, 2018. "Single cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations," Nature Communications, Nature, vol. 9(1), pages 1-21, December.
    2. Michael S. Lawrence & Petar Stojanov & Paz Polak & Gregory V. Kryukov & Kristian Cibulskis & Andrey Sivachenko & Scott L. Carter & Chip Stewart & Craig H. Mermel & Steven A. Roberts & Adam Kiezun & Pe, 2013. "Mutational heterogeneity in cancer and the search for new cancer-associated genes," Nature, Nature, vol. 499(7457), pages 214-218, July.
    3. Yujin Hoshida, 2010. "Nearest Template Prediction: A Single-Sample-Based Flexible Class Prediction with Confidence Assessment," PLOS ONE, Public Library of Science, vol. 5(11), pages 1-8, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jujiao Kang & Yue-Ting Deng & Bang-Sheng Wu & Wei-Shi Liu & Ze-Yu Li & Shitong Xiang & Liu Yang & Jia You & Xiaohong Gong & Tianye Jia & Jin-Tai Yu & Wei Cheng & Jianfeng Feng, 2024. "Whole exome sequencing analysis identifies genes for alcohol consumption," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Anna Luiza Silva Almeida Vicente & Alexei Novoloaca & Vincent Cahais & Zainab Awada & Cyrille Cuenin & Natália Spitz & André Lopes Carvalho & Adriane Feijó Evangelista & Camila Souza Crovador & Rui Ma, 2022. "Cutaneous and acral melanoma cross-OMICs reveals prognostic cancer drivers associated with pathobiology and ultraviolet exposure," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Franziska Hildebrandt & Alma Andersson & Sami Saarenpää & Ludvig Larsson & Noémi Van Hul & Sachie Kanatani & Jan Masek & Ewa Ellis & Antonio Barragan & Annelie Mollbrink & Emma R. Andersson & Joakim L, 2021. "Spatial Transcriptomics to define transcriptional patterns of zonation and structural components in the mouse liver," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    4. Agnieska Brazovskaja & Tomás Gomes & Rene Holtackers & Philipp Wahle & Christiane Körner & Zhisong He & Theresa Schaffer & Julian Connor Eckel & René Hänsel & Malgorzata Santel & Makiko Seimiya & Timm, 2024. "Cell atlas of the regenerating human liver after portal vein embolization," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    5. Oriol Pich & Iker Reyes-Salazar & Abel Gonzalez-Perez & Nuria Lopez-Bigas, 2022. "Discovering the drivers of clonal hematopoiesis," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Zongfu Pan & Zhuo Tan & Ning Xu & Zhenmei Yao & Chuanming Zheng & Jinbiao Shang & Lei Xie & Jiajie Xu & Jiafeng Wang & Liehao Jiang & Xuhang Zhu & Dingyi Yu & Ying Li & Yulu Che & Yingying Gong & Zhao, 2025. "Integrative proteogenomic characterization reveals therapeutic targets in poorly differentiated and anaplastic thyroid cancers," Nature Communications, Nature, vol. 16(1), pages 1-20, December.
    7. Sumana Srivatsa & Hesam Montazeri & Gaia Bianco & Mairene Coto-Llerena & Mattia Marinucci & Charlotte K. Y. Ng & Salvatore Piscuoglio & Niko Beerenwinkel, 2022. "Discovery of synthetic lethal interactions from large-scale pan-cancer perturbation screens," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    8. Delaram Pouyabahar & Tallulah Andrews & Gary D. Bader, 2025. "Interpretable single-cell factor decomposition using sciRED," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    9. Shufen Zheng & Philip S. Tsao & Cuiping Pan, 2024. "Abdominal aortic aneurysm and cardiometabolic traits share strong genetic susceptibility to lipid metabolism and inflammation," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    10. Benjamin A. Nacev & Francisco Sanchez-Vega & Shaleigh A. Smith & Cristina R. Antonescu & Evan Rosenbaum & Hongyu Shi & Cerise Tang & Nicholas D. Socci & Satshil Rana & Rodrigo Gularte-Mérida & Ahmet Z, 2022. "Clinical sequencing of soft tissue and bone sarcomas delineates diverse genomic landscapes and potential therapeutic targets," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    11. Josh N. Vo & Yi-Mi Wu & Jeanmarie Mishler & Sarah Hall & Rahul Mannan & Lisha Wang & Yu Ning & Jin Zhou & Alexander C. Hopkins & James C. Estill & Wallace K. B. Chan & Jennifer Yesil & Xuhong Cao & Ar, 2022. "The genetic heterogeneity and drug resistance mechanisms of relapsed refractory multiple myeloma," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    12. Roberta Esposito & Andrés Lanzós & Tina Uroda & Sunandini Ramnarayanan & Isabel Büchi & Taisia Polidori & Hugo Guillen-Ramirez & Ante Mihaljevic & Bernard Mefi Merlin & Lia Mela & Eugenio Zoni & Lusin, 2023. "Tumour mutations in long noncoding RNAs enhance cell fitness," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    13. Hongru Hu & Gerald Quon, 2024. "scPair: Boosting single cell multimodal analysis by leveraging implicit feature selection and single cell atlases," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    14. Erik Elias & Arman Ardalan & Markus Lindberg & Susanne E. Reinsbach & Andreas Muth & Ola Nilsson & Yvonne Arvidsson & Erik Larsson, 2021. "Independent somatic evolution underlies clustered neuroendocrine tumors in the human small intestine," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    15. Minghao Li & Zicheng Zhang & Qianrong Wang & Yan Yi & Baosheng Li, 2022. "Integrated cohort of esophageal squamous cell cancer reveals genomic features underlying clinical characteristics," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    16. Christel F. A. Ramirez & Daniel Taranto & Masami Ando-Kuri & Marnix H. P. Groot & Efi Tsouri & Zhijie Huang & Daniel Groot & Roelof J. C. Kluin & Daan J. Kloosterman & Joanne Verheij & Jing Xu & Seren, 2024. "Cancer cell genetics shaping of the tumor microenvironment reveals myeloid cell-centric exploitable vulnerabilities in hepatocellular carcinoma," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
    17. Yuanyuan Qu & Xiaohui Wu & Aihetaimujiang Anwaier & Jinwen Feng & Wenhao Xu & Xiaoru Pei & Yu Zhu & Yang Liu & Lin Bai & Guojian Yang & Xi Tian & Jiaqi Su & Guo-Hai Shi & Da-Long Cao & Fujiang Xu & Yu, 2022. "Proteogenomic characterization of MiT family translocation renal cell carcinoma," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    18. Ami G Sangster & Robert J Gooding & Andrew Garven & Hamid Ghaedi & David M Berman & Scott K Davey, 2022. "Mutually exclusive mutation profiles define functionally related genes in muscle invasive bladder cancer," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-17, January.
    19. Sarah Cappuyns & Gino Philips & Vincent Vandecaveye & Bram Boeckx & Rogier Schepers & Thomas Van Brussel & Ingrid Arijs & Aurelie Mechels & Ayse Bassez & Francesca Lodi & Joris Jaekers & Halit Topal &, 2023. "PD-1- CD45RA+ effector-memory CD8 T cells and CXCL10+ macrophages are associated with response to atezolizumab plus bevacizumab in advanced hepatocellular carcinoma," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    20. Tanaz Sharifnia & Mathias J. Wawer & Amy Goodale & Yenarae Lee & Mariya Kazachkova & Joshua M. Dempster & Sandrine Muller & Joan Levy & Daniel M. Freed & Josh Sommer & Jérémie Kalfon & Francisca Vazqu, 2023. "Mapping the landscape of genetic dependencies in chordoma," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61448-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.