Author
Listed:
- Raluca Petrican
(University of Liverpool)
- Alex Fornito
(Monash University)
- Christopher Murgatroyd
(Manchester Metropolitan University)
- Emma Boyland
(University of Liverpool)
- Charlotte A. Hardman
(University of Liverpool)
Abstract
Recent evidence challenged the traditional, categorical approach to sex differences, indicating that each human brain comprises a mosaic of features, some of which are more common among males, others, among females, whereas the remaining are equally common between sexes. Thus, a focus on regional sexual differentiation of brain function, instead of holistic sex-based categorization, could be more useful for understanding psychiatric conditions, such as mood and behavioural disorders, to which males and females are differentially vulnerable. To probe this untested hypothesis, we estimate sexual differentiation within each brain in a longitudinal (N = 199) and cross-sectional (N = 277) sample of male and female adolescents. Greater feminization of association networks, involved in higher-order cognition, compared to sensory networks, at ages 9-10 correlates with earlier puberty and greater immune/metabolic dysregulation at ages 11-12, particularly among girls. Greater masculinization of association networks relates to later puberty and reduced immune/metabolic dysregulation, especially among boys. The brain and physiological profiles sequentially mediate the relationship between genetic risk and rising mood/behavioural symptoms. These links are replicated in the cross-sectional sample and shown to hold across sexes. Our study emphasizes the importance of integrating assessments of regional sexual differentiation and physiology in personalizing psychiatric intervention in adolescence.
Suggested Citation
Raluca Petrican & Alex Fornito & Christopher Murgatroyd & Emma Boyland & Charlotte A. Hardman, 2025.
"Genetic risk predicts adolescent mood pathology via sexual differentiation of brain function and physiological aging,"
Nature Communications, Nature, vol. 16(1), pages 1-21, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60686-5
DOI: 10.1038/s41467-025-60686-5
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60686-5. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.