IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0305803.html
   My bibliography  Save this article

Identifying key genes in COPD risk via multiple population data integration and gene prioritization

Author

Listed:
  • Afeefa Zainab
  • Hayato Anzawa
  • Kengo Kinoshita

Abstract

Chronic obstructive pulmonary disease (COPD) is a highly prevalent disease, making it a leading cause of death worldwide. Several genome-wide association studies (GWAS) have been conducted to identify loci associated with COPD. However, different ancestral genetic compositions for the same disease across various populations present challenges in studies involving multi-population data. In this study, we aimed to identify protein-coding genes associated with COPD by prioritizing genes for each population’s GWAS data, and then combining these results instead of performing a common meta-GWAS due to significant sample differences in different population cohorts. Lung function measurements are often used as indicators for COPD risk prediction; therefore, we used lung function GWAS data from two populations, Japanese and European, and re-evaluated them using a multi-population gene prioritization approach. This study identified significant single nucleotide variants (SNPs) in both Japanese and European populations. The Japanese GWAS revealed nine significant SNPs and four lead SNPs in three genomic risk loci. In comparison, the European population showed five lead SNPs and 17 independent significant SNPs in 21 genomic risk loci. A comparative analysis of the results found 28 similar genes in the prioritized gene lists of both populations. We also performed a standard meta-analysis for comparison and identified 18 common genes in both populations. Our approach demonstrated that trans-ethnic linkage disequilibrium (LD) could detect some significant novel associations and genes that have yet to be reported or were missed in previous analyses. The study suggests that a gene prioritization approach for multi-population analysis using GWAS data may be a feasible method to identify new associations in data with genetic diversity across different populations. It also highlights the possibility of identifying generalized and population-specific treatment and diagnostic options.

Suggested Citation

  • Afeefa Zainab & Hayato Anzawa & Kengo Kinoshita, 2024. "Identifying key genes in COPD risk via multiple population data integration and gene prioritization," PLOS ONE, Public Library of Science, vol. 19(11), pages 1-19, November.
  • Handle: RePEc:plo:pone00:0305803
    DOI: 10.1371/journal.pone.0305803
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0305803
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0305803&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0305803?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kyoko Watanabe & Erdogan Taskesen & Arjen Bochoven & Danielle Posthuma, 2017. "Functional mapping and annotation of genetic associations with FUMA," Nature Communications, Nature, vol. 8(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Natalie DeForest & Yuqi Wang & Zhiyi Zhu & Jacqueline S. Dron & Ryan Koesterer & Pradeep Natarajan & Jason Flannick & Tiffany Amariuta & Gina M. Peloso & Amit R. Majithia, 2024. "Genome-wide discovery and integrative genomic characterization of insulin resistance loci using serum triglycerides to HDL-cholesterol ratio as a proxy," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Shahram Bahrami & Kaja Nordengen & Jaroslav Rokicki & Alexey A. Shadrin & Zillur Rahman & Olav B. Smeland & Piotr P. Jaholkowski & Nadine Parker & Pravesh Parekh & Kevin S. O’Connell & Torbjørn Elvsås, 2024. "The genetic landscape of basal ganglia and implications for common brain disorders," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Bhuwan Khatri & Kandice L. Tessneer & Astrid Rasmussen & Farhang Aghakhanian & Tove Ragna Reksten & Adam Adler & Ilias Alevizos & Juan-Manuel Anaya & Lara A. Aqrawi & Eva Baecklund & Johan G. Brun & S, 2022. "Genome-wide association study identifies Sjögren’s risk loci with functional implications in immune and glandular cells," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    4. Mathias Seviiri & Matthew H. Law & Jue-Sheng Ong & Puya Gharahkhani & Pierre Fontanillas & Catherine M. Olsen & David C. Whiteman & Stuart MacGregor, 2022. "A multi-phenotype analysis reveals 19 susceptibility loci for basal cell carcinoma and 15 for squamous cell carcinoma," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    5. Ambroise Wonkam & Kevin Esoh & Rachel M. Levine & Valentina Josiane Ngo Bitoungui & Khuthala Mnika & Nikitha Nimmagadda & Erin A. D. Dempsey & Siana Nkya & Raphael Z. Sangeda & Victoria Nembaware & Ja, 2025. "FLT1 and other candidate fetal haemoglobin modifying loci in sickle cell disease in African ancestries," Nature Communications, Nature, vol. 16(1), pages 1-21, December.
    6. Paul R. H. J. Timmers & James F. Wilson & Peter K. Joshi & Joris Deelen, 2020. "Multivariate genomic scan implicates novel loci and haem metabolism in human ageing," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    7. Zhen Qiao & Julia Sidorenko & Joana A. Revez & Angli Xue & Xueling Lu & Katri Pärna & Harold Snieder & Peter M. Visscher & Naomi R. Wray & Loic Yengo, 2023. "Estimation and implications of the genetic architecture of fasting and non-fasting blood glucose," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Aleksandra D. Chybowska & Elena Bernabeu & Paul Yousefi & Matthew Suderman & Robert F. Hillary & Richard Clark & Louise MacGillivray & Lee Murphy & Sarah E. Harris & Janie Corley & Archie Campbell & T, 2025. "A blood- and brain-based EWAS of smoking," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    9. Danni A. Gadd & Robert F. Hillary & Daniel L. McCartney & Liu Shi & Aleks Stolicyn & Neil A. Robertson & Rosie M. Walker & Robert I. McGeachan & Archie Campbell & Shen Xueyi & Miruna C. Barbu & Claire, 2022. "Integrated methylome and phenome study of the circulating proteome reveals markers pertinent to brain health," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    10. Fasil Tekola-Ayele & Xuehuo Zeng & Suvo Chatterjee & Marion Ouidir & Corina Lesseur & Ke Hao & Jia Chen & Markos Tesfaye & Carmen J. Marsit & Tsegaselassie Workalemahu & Ronald Wapner, 2022. "Placental multi-omics integration identifies candidate functional genes for birthweight," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    11. Xingjie Hao & Zhonghe Shao & Ning Zhang & Minghui Jiang & Xi Cao & Si Li & Yunlong Guan & Chaolong Wang, 2023. "Integrative genome-wide analyses identify novel loci associated with kidney stones and provide insights into its genetic architecture," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    12. Siquan Zhou & Yujie Xu & Jingyuan Xiong & Guo Cheng, 2025. "Cross-trait multivariate GWAS confirms health implications of pubertal timing," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    13. Wendiao Zhang & Ming Zhang & Zhenhong Xu & Hongye Yan & Huimin Wang & Jiamei Jiang & Juan Wan & Beisha Tang & Chunyu Liu & Chao Chen & Qingtuan Meng, 2023. "Human forebrain organoid-based multi-omics analyses of PCCB as a schizophrenia associated gene linked to GABAergic pathways," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    14. Bingxin Zhao & Yujue Li & Zirui Fan & Zhenyi Wu & Juan Shu & Xiaochen Yang & Yilin Yang & Xifeng Wang & Bingxuan Li & Xiyao Wang & Carlos Copana & Yue Yang & Jinjie Lin & Yun Li & Jason L. Stein & Joa, 2024. "Eye-brain connections revealed by multimodal retinal and brain imaging genetics," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    15. Isabelle Austin-Zimmerman & Daniel F. Levey & Olga Giannakopoulou & Joseph D. Deak & Marco Galimberti & Keyrun Adhikari & Hang Zhou & Spiros Denaxas & Haritz Irizar & Karoline Kuchenbaecker & Andrew M, 2023. "Genome-wide association studies and cross-population meta-analyses investigating short and long sleep duration," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    16. Gregory Rompala & Sheila T. Nagamatsu & José Jaime Martínez-Magaña & Diana L. Nuñez-Ríos & Jiawei Wang & Matthew J. Girgenti & John H. Krystal & Joel Gelernter & Yasmin L. Hurd & Janitza L. Montalvo-O, 2023. "Profiling neuronal methylome and hydroxymethylome of opioid use disorder in the human orbitofrontal cortex," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    17. Devansh Pandey & Mariana Harris & Nandita R. Garud & Vagheesh M. Narasimhan, 2024. "Leveraging ancient DNA to uncover signals of natural selection in Europe lost due to admixture or drift," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    18. Peter Zhukovsky & Earvin S. Tio & Gillian Coughlan & David A. Bennett & Yanling Wang & Timothy J. Hohman & Diego A. Pizzagalli & Benoit H. Mulsant & Aristotle N. Voineskos & Daniel Felsky, 2024. "Genetic influences on brain and cognitive health and their interactions with cardiovascular conditions and depression," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    19. Yuki Ishikawa & Nao Tanaka & Yoshihide Asano & Masanari Kodera & Yuichiro Shirai & Mitsuteru Akahoshi & Minoru Hasegawa & Takashi Matsushita & Kazuyoshi Saito & Sei-ichiro Motegi & Hajime Yoshifuji & , 2024. "GWAS for systemic sclerosis identifies six novel susceptibility loci including one in the Fcγ receptor region," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    20. Jie Huang & Jennifer E. Huffman & Yunfeng Huang & Ítalo Valle & Themistocles L. Assimes & Sridharan Raghavan & Benjamin F. Voight & Chang Liu & Albert-László Barabási & Rose D. L. Huang & Qin Hui & Xu, 2022. "Genomics and phenomics of body mass index reveals a complex disease network," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0305803. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.