Author
Listed:
- Yuchao Zhang
(Central South University)
- Shanzheng Du
(Central South University)
- Xiaochi Liu
(Central South University)
- Yahua Yuan
(Central South University)
- Yumei Jing
(Central South University)
- Tian Tian
(Fudan University)
- Junhao Chu
(Fudan University)
- Fei Xue
(Zhejiang University
Zhejiang University)
- Kai Chang
(Zhejiang University)
- Jian Sun
(Central South University
Central South University)
Abstract
Beyond conventional electrical modulation, flexoelectricity enables mechanical control of ferroelectric polarizations, offering a pathway for tactile-responsive ferroelectric systems. However, mechanical polarization switching typically requires substantial static threshold forces to overcome the significant energy barrier, resulting in material fatigue and slow response that compromises reliability and hinders practical applications. In this work, we address these challenges by introducing an imprint field through asymmetric electrostatic boundary design with distinct work functions. This built-in electric field stabilizes the energy landscape, effectively lowering the polarization switching barrier. Subsequently, nonvolatile polarization switching with a low threshold force of 12 nN·nm−1 is achieved in CuInP2S6 without material damage. Surpassing the limitations of slow static force controls, our work marks the first experimental demonstration of fast mechanical control of polarization switching with 4 millisecond-long low force pulses. To further highlight the potential of this rapid, low-force mechanical control, we propose a van der Waals heterostructured mechanically gated transistor with asymmetric electrostatic boundary, which exhibits gate force pulses-controlled multi-level, nonvolatile conductance states. Our findings establish a paradigm for next-generation ferroelectric electronics that integrate responsiveness to mechanical stimuli.
Suggested Citation
Yuchao Zhang & Shanzheng Du & Xiaochi Liu & Yahua Yuan & Yumei Jing & Tian Tian & Junhao Chu & Fei Xue & Kai Chang & Jian Sun, 2025.
"Low-force pulse switching of ferroelectric polarization enabled by imprint field,"
Nature Communications, Nature, vol. 16(1), pages 1-8, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60602-x
DOI: 10.1038/s41467-025-60602-x
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60602-x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.