IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-60357-5.html
   My bibliography  Save this article

Mapping grey and white matter activity in the human brain with isotropic ADC-fMRI

Author

Listed:
  • Arthur P. C. Spencer

    (Lausanne University Hospital (CHUV))

  • Jasmine Nguyen-Duc

    (Lausanne University Hospital (CHUV)
    University of Lausanne (UNIL))

  • Inès Riedmatten

    (Lausanne University Hospital (CHUV)
    University of Lausanne (UNIL))

  • Filip Szczepankiewicz

    (Lund University)

  • Ileana O. Jelescu

    (Lausanne University Hospital (CHUV)
    University of Lausanne (UNIL))

Abstract

Functional MRI (fMRI) using the blood-oxygen level dependent (BOLD) signal provides valuable insight into grey matter activity. However, uncertainty surrounds the white matter BOLD signal. Apparent diffusion coefficient (ADC) offers an alternative fMRI contrast sensitive to transient cellular deformations during neural activity, facilitating detection of both grey and white matter activity. Further, through minimising vascular contamination, ADC-fMRI has the potential to overcome the limited temporal specificity of the BOLD signal. However, the use of linear diffusion encoding introduces sensitivity to fibre directionality, while averaging over multiple directions comes at great cost to temporal resolution. In this study, we used spherical b-tensor encoding to impart diffusion sensitisation in all directions per shot, providing an ADC-fMRI contrast capable of detecting activity independently of fibre directionality. We provide evidence from two task-based experiments on a clinical scanner that isotropic ADC-fMRI is more temporally specific than BOLD-fMRI, and offers more balanced mapping of grey and white matter activity. We further demonstrate that isotropic ADC-fMRI detects white matter activity independently of fibre direction, while linear ADC-fMRI preferentially detects activity in voxels containing fibres perpendicular to the diffusion encoding direction. Thus, isotropic ADC-fMRI opens avenues for investigation into whole-brain grey and white matter functional connectivity.

Suggested Citation

  • Arthur P. C. Spencer & Jasmine Nguyen-Duc & Inès Riedmatten & Filip Szczepankiewicz & Ileana O. Jelescu, 2025. "Mapping grey and white matter activity in the human brain with isotropic ADC-fMRI," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60357-5
    DOI: 10.1038/s41467-025-60357-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-60357-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-60357-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Matthew F. Glasser & Timothy S. Coalson & Emma C. Robinson & Carl D. Hacker & John Harwell & Essa Yacoub & Kamil Ugurbil & Jesper Andersson & Christian F. Beckmann & Mark Jenkinson & Stephen M. Smith , 2016. "A multi-modal parcellation of human cerebral cortex," Nature, Nature, vol. 536(7615), pages 171-178, August.
    2. Muwei Li & Allen T. Newton & Adam W. Anderson & Zhaohua Ding & John C. Gore, 2019. "Characterization of the hemodynamic response function in white matter tracts for event-related fMRI," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    3. repec:plo:pone00:0214238 is not listed on IDEAS
    4. Nikos K. Logothetis & Jon Pauls & Mark Augath & Torsten Trinath & Axel Oeltermann, 2001. "Neurophysiological investigation of the basis of the fMRI signal," Nature, Nature, vol. 412(6843), pages 150-157, July.
    5. Evan M. Gordon & Roselyne J. Chauvin & Andrew N. Van & Aishwarya Rajesh & Ashley Nielsen & Dillan J. Newbold & Charles J. Lynch & Nicole A. Seider & Samuel R. Krimmel & Kristen M. Scheidter & Julia Mo, 2023. "A somato-cognitive action network alternates with effector regions in motor cortex," Nature, Nature, vol. 617(7960), pages 351-359, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yali Huang & Peng-Hu Wei & Longzhou Xu & Desheng Chen & Yanfeng Yang & Wenkai Song & Yangyang Yi & Xiaoli Jia & Guowei Wu & Qingchen Fan & Zaixu Cui & Guoguang Zhao, 2023. "Intracranial electrophysiological and structural basis of BOLD functional connectivity in human brain white matter," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Samuel R. Krimmel & Timothy O. Laumann & Roselyne J. Chauvin & Tamara Hershey & Jarod L. Roland & Joshua S. Shimony & Jon T. Willie & Scott A. Norris & Scott Marek & Andrew N. Van & Anxu Wang & Julia , 2025. "The human brainstem’s red nucleus was upgraded to support goal-directed action," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    3. Noemi Gozzi & Lauren Chee & Ingrid Odermatt & Sanne Kikkert & Greta Preatoni & Giacomo Valle & Nikolai Pfender & Felix Beuschlein & Nicole Wenderoth & Carl Zipser & Stanisa Raspopovic, 2024. "Wearable non-invasive neuroprosthesis for targeted sensory restoration in neuropathy," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    4. Hiroko Yamano & Shu Liu & Fujio Toriumi, 2024. "Hypergraph modeling of complex interactions: Applications from human musculoskeletal structures to complex system dynamics," PLOS ONE, Public Library of Science, vol. 19(11), pages 1-16, November.
    5. Leon D. Lotter & Amin Saberi & Justine Y. Hansen & Bratislav Misic & Casey Paquola & Gareth J. Barker & Arun L. W. Bokde & Sylvane Desrivières & Herta Flor & Antoine Grigis & Hugh Garavan & Penny Gowl, 2024. "Regional patterns of human cortex development correlate with underlying neurobiology," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    6. Haewon Nam & Chongwon Pae & Jinseok Eo & Maeng-Keun Oh & Hae-Jeong Park, 2021. "Inter-species cortical registration between macaques and humans using a functional network property under a spherical demons framework," PLOS ONE, Public Library of Science, vol. 16(10), pages 1-22, October.
    7. Arno Klein & Satrajit S Ghosh & Forrest S Bao & Joachim Giard & Yrjö Häme & Eliezer Stavsky & Noah Lee & Brian Rossa & Martin Reuter & Elias Chaibub Neto & Anisha Keshavan, 2017. "Mindboggling morphometry of human brains," PLOS Computational Biology, Public Library of Science, vol. 13(2), pages 1-40, February.
    8. Zvi N. Roth & Kendrick Kay & Elisha P. Merriam, 2022. "Natural scene sampling reveals reliable coarse-scale orientation tuning in human V1," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    9. Ann Hillier & Ryan P Kelly & Terrie Klinger, 2016. "Narrative Style Influences Citation Frequency in Climate Change Science," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-12, December.
    10. Ziliang Zhu & Huichao Yang & Haojie Wen & Jinyi Hung & Yueqin Hu & Yanchao Bi & Xi Yu, 2025. "Innate network mechanisms of temporal pole for semantic cognition in neonatal and adult twin studies," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
    11. Juan Carlos Baldermann & Jan Niklas Petry-Schmelzer & Thomas Schüller & Lin Mahfoud & Gregor A. Brandt & Till A. Dembek & Christina Linden & Joachim K. Krauss & Natalia Szejko & Kirsten R. Müller-Vahl, 2024. "A critical role of action-related functional networks in Gilles de la Tourette syndrome," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    12. Manish Saggar & James M. Shine & Raphaël Liégeois & Nico U. F. Dosenbach & Damien Fair, 2022. "Precision dynamical mapping using topological data analysis reveals a hub-like transition state at rest," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    13. Wan-Yu Shih & Hsiang-Yu Yu & Cheng-Chia Lee & Chien-Chen Chou & Chien Chen & Paul W. Glimcher & Shih-Wei Wu, 2023. "Electrophysiological population dynamics reveal context dependencies during decision making in human frontal cortex," Nature Communications, Nature, vol. 14(1), pages 1-24, December.
    14. Casey Paquola & Reinder Vos De Wael & Konrad Wagstyl & Richard A I Bethlehem & Seok-Jun Hong & Jakob Seidlitz & Edward T Bullmore & Alan C Evans & Bratislav Misic & Daniel S Margulies & Jonathan Small, 2019. "Microstructural and functional gradients are increasingly dissociated in transmodal cortices," PLOS Biology, Public Library of Science, vol. 17(5), pages 1-28, May.
    15. Amrita Pal & Jennifer A Ogren & Ravi S Aysola & Rajesh Kumar & Luke A Henderson & Ronald M Harper & Paul M Macey, 2021. "Insular functional organization during handgrip in females and males with obstructive sleep apnea," PLOS ONE, Public Library of Science, vol. 16(2), pages 1-22, February.
    16. Peter Zhukovsky & Earvin S. Tio & Gillian Coughlan & David A. Bennett & Yanling Wang & Timothy J. Hohman & Diego A. Pizzagalli & Benoit H. Mulsant & Aristotle N. Voineskos & Daniel Felsky, 2024. "Genetic influences on brain and cognitive health and their interactions with cardiovascular conditions and depression," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    17. Tingting Bo & Jie Li & Ganlu Hu & Ge Zhang & Wei Wang & Qian Lv & Shaoling Zhao & Junjie Ma & Meng Qin & Xiaohui Yao & Meiyun Wang & Guang-Zhong Wang & Zheng Wang, 2023. "Brain-wide and cell-specific transcriptomic insights into MRI-derived cortical morphology in macaque monkeys," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    18. Gustavo Deco & Diego Vidaurre & Morten L. Kringelbach, 2021. "Revisiting the global workspace orchestrating the hierarchical organization of the human brain," Nature Human Behaviour, Nature, vol. 5(4), pages 497-511, April.
    19. Martin Gell & Simon B. Eickhoff & Amir Omidvarnia & Vincent Küppers & Kaustubh R. Patil & Theodore D. Satterthwaite & Veronika I. Müller & Robert Langner, 2024. "How measurement noise limits the accuracy of brain-behaviour predictions," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    20. Sofie L. Valk & Ting Xu & Casey Paquola & Bo-yong Park & Richard A. I. Bethlehem & Reinder Vos de Wael & Jessica Royer & Shahrzad Kharabian Masouleh & Şeyma Bayrak & Peter Kochunov & B. T. Thomas Yeo , 2022. "Genetic and phylogenetic uncoupling of structure and function in human transmodal cortex," Nature Communications, Nature, vol. 13(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-60357-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.