IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-61251-w.html
   My bibliography  Save this article

Functional contrast across the gray-white matter boundary

Author

Listed:
  • Muwei Li

    (Vanderbilt University Medical Center
    Vanderbilt University Medical Center)

  • Lyuan Xu

    (Vanderbilt University Medical Center
    Vanderbilt University)

  • Soyoung Choi

    (Vanderbilt University Medical Center
    Vanderbilt University Medical Center)

  • Yuanyuan Qin

    (Huazhong University of Science and Technology)

  • Fei Gao

    (Shandong Provincial Hospital Affiliated to Shandong First Medical University)

  • Kurt G. Schilling

    (Vanderbilt University Medical Center
    Vanderbilt University Medical Center)

  • Yurui Gao

    (Vanderbilt University Medical Center
    Vanderbilt University)

  • Zhongliang Zu

    (Vanderbilt University Medical Center
    Vanderbilt University Medical Center)

  • Adam W. Anderson

    (Vanderbilt University Medical Center
    Vanderbilt University Medical Center
    Vanderbilt University)

  • Zhaohua Ding

    (Vanderbilt University Medical Center
    Vanderbilt University
    Vanderbilt University
    Vanderbilt University)

  • John C. Gore

    (Vanderbilt University Medical Center
    Vanderbilt University Medical Center
    Vanderbilt University)

Abstract

Functional magnetic resonance imaging studies have traditionally focused on gray matter, overlooking white matter despite growing evidence that functional blood oxygenation-level dependent effects also occur there. In particular, functional coupling across the gray-white matter boundary, an interface between local and global processing, remains poorly understood. This study introduces two metrics: gray-white matter functional connectivity, which captures temporal synchrony across the boundary, and gray-white blood oxygenation-level dependent power ratio, which reflects differences in signal amplitude. Gray-white matter functional connectivity aligns with patterns of myelination, long-range connectivity, and sensorimotor organization, suggesting efficient signal transmission. In contrast, the power ratio shows an inverse pattern, with higher values in higher-order regions, possibly reflecting increased metabolic demands in white matter. It also increases with age (8 to 21 years), suggesting developmental shifts in energetic demands. Together, these metrics highlight distinct yet complementary roles of signal fidelity and energy modulation at the gray-white matter boundary.

Suggested Citation

  • Muwei Li & Lyuan Xu & Soyoung Choi & Yuanyuan Qin & Fei Gao & Kurt G. Schilling & Yurui Gao & Zhongliang Zu & Adam W. Anderson & Zhaohua Ding & John C. Gore, 2025. "Functional contrast across the gray-white matter boundary," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61251-w
    DOI: 10.1038/s41467-025-61251-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-61251-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-61251-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Matthew F. Glasser & Timothy S. Coalson & Emma C. Robinson & Carl D. Hacker & John Harwell & Essa Yacoub & Kamil Ugurbil & Jesper Andersson & Christian F. Beckmann & Mark Jenkinson & Stephen M. Smith , 2016. "A multi-modal parcellation of human cerebral cortex," Nature, Nature, vol. 536(7615), pages 171-178, August.
    2. Muwei Li & Allen T. Newton & Adam W. Anderson & Zhaohua Ding & John C. Gore, 2019. "Characterization of the hemodynamic response function in white matter tracts for event-related fMRI," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    3. Brenden Tervo-Clemmens & Finnegan J. Calabro & Ashley C. Parr & Jennifer Fedor & William Foran & Beatriz Luna, 2023. "A canonical trajectory of executive function maturation from adolescence to adulthood," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arthur P. C. Spencer & Jasmine Nguyen-Duc & Inès Riedmatten & Filip Szczepankiewicz & Ileana O. Jelescu, 2025. "Mapping grey and white matter activity in the human brain with isotropic ADC-fMRI," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    2. Leon D. Lotter & Amin Saberi & Justine Y. Hansen & Bratislav Misic & Casey Paquola & Gareth J. Barker & Arun L. W. Bokde & Sylvane Desrivières & Herta Flor & Antoine Grigis & Hugh Garavan & Penny Gowl, 2024. "Regional patterns of human cortex development correlate with underlying neurobiology," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    3. Haewon Nam & Chongwon Pae & Jinseok Eo & Maeng-Keun Oh & Hae-Jeong Park, 2021. "Inter-species cortical registration between macaques and humans using a functional network property under a spherical demons framework," PLOS ONE, Public Library of Science, vol. 16(10), pages 1-22, October.
    4. Arno Klein & Satrajit S Ghosh & Forrest S Bao & Joachim Giard & Yrjö Häme & Eliezer Stavsky & Noah Lee & Brian Rossa & Martin Reuter & Elias Chaibub Neto & Anisha Keshavan, 2017. "Mindboggling morphometry of human brains," PLOS Computational Biology, Public Library of Science, vol. 13(2), pages 1-40, February.
    5. Ann Hillier & Ryan P Kelly & Terrie Klinger, 2016. "Narrative Style Influences Citation Frequency in Climate Change Science," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-12, December.
    6. Ziliang Zhu & Huichao Yang & Haojie Wen & Jinyi Hung & Yueqin Hu & Yanchao Bi & Xi Yu, 2025. "Innate network mechanisms of temporal pole for semantic cognition in neonatal and adult twin studies," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
    7. Manish Saggar & James M. Shine & Raphaël Liégeois & Nico U. F. Dosenbach & Damien Fair, 2022. "Precision dynamical mapping using topological data analysis reveals a hub-like transition state at rest," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    8. Casey Paquola & Reinder Vos De Wael & Konrad Wagstyl & Richard A I Bethlehem & Seok-Jun Hong & Jakob Seidlitz & Edward T Bullmore & Alan C Evans & Bratislav Misic & Daniel S Margulies & Jonathan Small, 2019. "Microstructural and functional gradients are increasingly dissociated in transmodal cortices," PLOS Biology, Public Library of Science, vol. 17(5), pages 1-28, May.
    9. Peter Zhukovsky & Earvin S. Tio & Gillian Coughlan & David A. Bennett & Yanling Wang & Timothy J. Hohman & Diego A. Pizzagalli & Benoit H. Mulsant & Aristotle N. Voineskos & Daniel Felsky, 2024. "Genetic influences on brain and cognitive health and their interactions with cardiovascular conditions and depression," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Tingting Bo & Jie Li & Ganlu Hu & Ge Zhang & Wei Wang & Qian Lv & Shaoling Zhao & Junjie Ma & Meng Qin & Xiaohui Yao & Meiyun Wang & Guang-Zhong Wang & Zheng Wang, 2023. "Brain-wide and cell-specific transcriptomic insights into MRI-derived cortical morphology in macaque monkeys," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    11. Gustavo Deco & Diego Vidaurre & Morten L. Kringelbach, 2021. "Revisiting the global workspace orchestrating the hierarchical organization of the human brain," Nature Human Behaviour, Nature, vol. 5(4), pages 497-511, April.
    12. Martin Gell & Simon B. Eickhoff & Amir Omidvarnia & Vincent Küppers & Kaustubh R. Patil & Theodore D. Satterthwaite & Veronika I. Müller & Robert Langner, 2024. "How measurement noise limits the accuracy of brain-behaviour predictions," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    13. Sofie L. Valk & Ting Xu & Casey Paquola & Bo-yong Park & Richard A. I. Bethlehem & Reinder Vos de Wael & Jessica Royer & Shahrzad Kharabian Masouleh & Şeyma Bayrak & Peter Kochunov & B. T. Thomas Yeo , 2022. "Genetic and phylogenetic uncoupling of structure and function in human transmodal cortex," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    14. Natalie Weed & Trygve Bakken & Nile Graddis & Nathan Gouwens & Daniel Millman & Michael Hawrylycz & Jack Waters, 2019. "Identification of genetic markers for cortical areas using a Random Forest classification routine and the Allen Mouse Brain Atlas," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-13, September.
    15. Zachariah M. Reagh & Charan Ranganath, 2023. "Flexible reuse of cortico-hippocampal representations during encoding and recall of naturalistic events," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    16. Daniel S. Kluger & Carina Forster & Omid Abbasi & Nikos Chalas & Arno Villringer & Joachim Gross, 2023. "Modulatory dynamics of periodic and aperiodic activity in respiration-brain coupling," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    17. Andrea I. Luppi & Helena M. Gellersen & Zhen-Qi Liu & Alexander R. D. Peattie & Anne E. Manktelow & Ram Adapa & Adrian M. Owen & Lorina Naci & David K. Menon & Stavros I. Dimitriadis & Emmanuel A. Sta, 2024. "Systematic evaluation of fMRI data-processing pipelines for consistent functional connectomics," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
    18. Svenja Küchenhoff & Şeyma Bayrak & Rachel G. Zsido & Amin Saberi & Boris C. Bernhardt & Susanne Weis & H. Lina Schaare & Julia Sacher & Simon Eickhoff & Sofie L. Valk, 2024. "Relating sex-bias in human cortical and hippocampal microstructure to sex hormones," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    19. Gregory Kroliczak & Lukasz Przybylski, 2024. "Handedness and the control of human technology and language," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-11, December.
    20. Ru Kong & R. Nathan Spreng & Aihuiping Xue & Richard F. Betzel & Jessica R. Cohen & Jessica S. Damoiseaux & Felipe De Brigard & Simon B. Eickhoff & Alex Fornito & Caterina Gratton & Evan M. Gordon & A, 2025. "A network correspondence toolbox for quantitative evaluation of novel neuroimaging results," Nature Communications, Nature, vol. 16(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-61251-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.