IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-59729-8.html
   My bibliography  Save this article

Extreme synchronization transitions

Author

Listed:
  • Seungjae Lee

    (Institute of Theoretical Physics and Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden)

  • Lennart J. Kuklinski

    (Institute of Theoretical Physics and Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden)

  • Marc Timme

    (Institute of Theoretical Physics and Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden
    Technische Universität Dresden
    Technische Universität Dresden
    Lakeside Labs)

Abstract

Across natural and human-made systems, transition points mark sudden changes of order and are thus key to understanding overarching system features. Motivated by recent experimental observations, we here uncover an intriguing class of transitions in coupled oscillators, extreme synchronization transitions, from asynchronous disordered states to synchronous states with almost completely ordered phases. Whereas such a transition appears like discontinuous or explosive phase transitions, it exhibits markedly distinct features. First, the transition occurs already in finite systems of N units and so constitutes an intriguing bifurcation of multi-dimensional systems rather than a genuine phase transition that emerges in the thermodynamic limit N → ∞ only. Second, the synchronization order parameter jumps from moderate values of the order of N−1/2 to values extremely close to 1, its theoretical maximum, immediately upon crossing a critical coupling strength. We analytically explain the mechanisms underlying such extreme transitions in coupled complexified Kuramoto oscillators. Extreme transitions may similarly occur across other systems of coupled oscillators as well as in certain percolation processes. In applications, their occurrence impacts our ability of ensuring or preventing strong forms of ordering, for instance in biological and engineered systems.

Suggested Citation

  • Seungjae Lee & Lennart J. Kuklinski & Marc Timme, 2025. "Extreme synchronization transitions," Nature Communications, Nature, vol. 16(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59729-8
    DOI: 10.1038/s41467-025-59729-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-59729-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-59729-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michel Fruchart & Ryo Hanai & Peter B. Littlewood & Vincenzo Vitelli, 2021. "Non-reciprocal phase transitions," Nature, Nature, vol. 592(7854), pages 363-369, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Etienne Jambon-Puillet & Andrea Testa & Charlotta Lorenz & Robert W. Style & Aleksander A. Rebane & Eric R. Dufresne, 2024. "Phase-separated droplets swim to their dissolution," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Jyoti Prasad Banerjee & Rituparno Mandal & Deb Sankar Banerjee & Shashi Thutupalli & Madan Rao, 2022. "Unjamming and emergent nonreciprocity in active ploughing through a compressible viscoelastic fluid," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Guy Amichay & Liang Li & Máté Nagy & Iain D. Couzin, 2024. "Revealing the mechanism and function underlying pairwise temporal coupling in collective motion," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Martorell, Carles & Calvo, Rubén & Annibale, Alessia & Muñoz, Miguel A., 2024. "Dynamically selected steady states and criticality in non-reciprocal networks," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    5. Xiangzun Wang & Pin-Chuan Chen & Klaus Kroy & Viktor Holubec & Frank Cichos, 2023. "Spontaneous vortex formation by microswimmers with retarded attractions," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Zhou, Yongjian & Zheng, Zhicheng & Wang, Tao & Peng, Xingguang, 2024. "Swarm dynamics of delayed self-propelled particles with non-reciprocal interactions," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    7. Alberto Dinelli & Jérémy O’Byrne & Agnese Curatolo & Yongfeng Zhao & Peter Sollich & Julien Tailleur, 2023. "Non-reciprocity across scales in active mixtures," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Seidel, Thomas G. & Javaloyes, Julien & Gurevich, Svetlana V., 2025. "Coherent pulse interactions in mode-locked semiconductor lasers," Chaos, Solitons & Fractals, Elsevier, vol. 195(C).
    9. Wu, Zihua & Zhang, Yinxing & Bao, Han & Lan, Rushi & Hua, Zhongyun, 2024. "nD-CS: A circularly shifting chaotic map generation method," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    10. Dennis Hardt & Reza Doostani & Sebastian Diehl & Nina Ser & Achim Rosch, 2025. "Propelling ferrimagnetic domain walls by dynamical frustration," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    11. Nguyen, Minh D.N. & Pham, Phuc H. & Ngo, Khang V. & Do, Van H. & Li, Shengkai & Phan, Trung V., 2024. "Remark on the entropy production of adaptive run-and-tumble chemotaxis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 634(C).
    12. Antoine Aubret & Quentin Martinet & Jeremie Palacci, 2021. "Metamachines of pluripotent colloids," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    13. Xiao Li & Yongyin Cao & Jack Ng, 2024. "Non-Hermitian non-equipartition theory for trapped particles," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    14. Joel W. Newbolt & Nickolas Lewis & Mathilde Bleu & Jiajie Wu & Christiana Mavroyiakoumou & Sophie Ramananarivo & Leif Ristroph, 2024. "Flow interactions lead to self-organized flight formations disrupted by self-amplifying waves," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    15. Mondal, Partha Sarathi & Mishra, Pawan Kumar & Vicsek, Tamás & Mishra, Shradha, 2025. "Dynamical swirl structures powered by microswimmers in active nematics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 659(C).
    16. Yuanzhao Zhang & Maxime Lucas & Federico Battiston, 2023. "Higher-order interactions shape collective dynamics differently in hypergraphs and simplicial complexes," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59729-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.