IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-022-35427-7.html
   My bibliography  Save this article

Spontaneous vortex formation by microswimmers with retarded attractions

Author

Listed:
  • Xiangzun Wang

    (Leipzig University)

  • Pin-Chuan Chen

    (Leipzig University)

  • Klaus Kroy

    (Leipzig University)

  • Viktor Holubec

    (Charles University)

  • Frank Cichos

    (Leipzig University)

Abstract

Collective states of inanimate particles self-assemble through physical interactions and thermal motion. Despite some phenomenological resemblance, including signatures of criticality, the autonomous dynamics that binds motile agents into flocks, herds, or swarms allows for much richer behavior. Low-dimensional models have hinted at the crucial role played in this respect by perceived information, decision-making, and feedback, implying that the corresponding interactions are inevitably retarded. Here we present experiments on spherical Brownian microswimmers with delayed self-propulsion toward a spatially fixed target. We observe a spontaneous symmetry breaking to a transiently chiral dynamical state and concomitant critical behavior that do not rely on many-particle cooperativity. By comparison with the stochastic delay differential equation of motion of a single swimmer, we pinpoint the delay-induced effective synchronization of the swimmers with their own past as the key mechanism. Increasing numbers of swimmers self-organize into layers with pro- and retrograde orbital motion, synchronized and stabilized by steric, phoretic, and hydrodynamic interactions. Our results demonstrate how even most simple retarded interactions can foster emergent complex adaptive behavior in small active-particle ensembles.

Suggested Citation

  • Xiangzun Wang & Pin-Chuan Chen & Klaus Kroy & Viktor Holubec & Frank Cichos, 2023. "Spontaneous vortex formation by microswimmers with retarded attractions," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-022-35427-7
    DOI: 10.1038/s41467-022-35427-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35427-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35427-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kevin P. O’Keeffe & Hyunsuk Hong & Steven H. Strogatz, 2017. "Oscillators that sync and swarm," Nature Communications, Nature, vol. 8(1), pages 1-13, December.
    2. Michel Fruchart & Ryo Hanai & Peter B. Littlewood & Vincenzo Vitelli, 2021. "Non-reciprocal phase transitions," Nature, Nature, vol. 592(7854), pages 363-369, April.
    3. Daiki Nishiguchi & Igor S Aranson & Alexey Snezhko & Andrey Sokolov, 2018. "Engineering bacterial vortex lattice via direct laser lithography," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    4. Jonas Cremer & Tomoya Honda & Ying Tang & Jerome Wong-Ng & Massimo Vergassola & Terence Hwa, 2019. "Chemotaxis as a navigation strategy to boost range expansion," Nature, Nature, vol. 575(7784), pages 658-663, November.
    5. Utsab Khadka & Viktor Holubec & Haw Yang & Frank Cichos, 2018. "Active particles bound by information flows," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    6. Tobias Bäuerle & Robert C. Löffler & Clemens Bechinger, 2020. "Formation of stable and responsive collective states in suspensions of active colloids," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    7. Daiki Nishiguchi & Igor S. Aranson & Alexey Snezhko & Andrey Sokolov, 2018. "Publisher Correction: Engineering bacterial vortex lattice via direct laser lithography," Nature Communications, Nature, vol. 9(1), pages 1-1, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiangzun Wang & Frank Cichos, 2024. "Harnessing synthetic active particles for physical reservoir computing," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiangzun Wang & Frank Cichos, 2024. "Harnessing synthetic active particles for physical reservoir computing," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Alberto Dinelli & Jérémy O’Byrne & Agnese Curatolo & Yongfeng Zhao & Peter Sollich & Julien Tailleur, 2023. "Non-reciprocity across scales in active mixtures," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Maxime Hubert & Stéphane Perrard & Nicolas Vandewalle & Matthieu Labousse, 2022. "Overload wave-memory induces amnesia of a self-propelled particle," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Minati, Ludovico & Innocenti, Giacomo & Mijatovic, Gorana & Ito, Hiroyuki & Frasca, Mattia, 2022. "Mechanisms of chaos generation in an atypical single-transistor oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    5. Carballosa, Alejandro & Muñuzuri, Alberto P., 2022. "Intermittency regimes of poorly-mixed chemical oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    6. Hilary Monaco & Kevin S. Liu & Tiago Sereno & Maxime Deforet & Bradford P. Taylor & Yanyan Chen & Caleb C. Reagor & Joao B. Xavier, 2022. "Spatial-temporal dynamics of a microbial cooperative behavior resistant to cheating," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Jyoti Prasad Banerjee & Rituparno Mandal & Deb Sankar Banerjee & Shashi Thutupalli & Madan Rao, 2022. "Unjamming and emergent nonreciprocity in active ploughing through a compressible viscoelastic fluid," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. Weng, Tongfeng & Chen, Xiaolu & Ren, Zhuoming & Xu, Jin & Yang, Huijie, 2023. "Multiple moving agents on complex networks: From intermittent synchronization to complete synchronization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 614(C).
    9. Park, Junpyo, 2022. "Effect of external migration on biodiversity in evolutionary dynamics of coupled cyclic competitions," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    10. Dai, X. & Kovalenko, K. & Molodyk, M. & Wang, Z. & Li, X. & Musatov, D. & Raigorodskii, A.M. & Alfaro-Bittner, K. & Cooper, G.D. & Bianconi, G. & Boccaletti, S., 2021. "D-dimensional oscillators in simplicial structures: Odd and even dimensions display different synchronization scenarios," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    11. Antoine Aubret & Quentin Martinet & Jeremie Palacci, 2021. "Metamachines of pluripotent colloids," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    12. Xiao Li & Yongyin Cao & Jack Ng, 2024. "Non-Hermitian non-equipartition theory for trapped particles," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    13. Cristóvão S. Dias & Manish Trivedi & Giovanni Volpe & Nuno A. M. Araújo & Giorgio Volpe, 2023. "Environmental memory boosts group formation of clueless individuals," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    14. Chen, Jie & Cao, Jinde & Huang, Wei, 2023. "Traffic-driven explosive synchronization with adaptive local routing in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    15. Gaurav Gardi & Steven Ceron & Wendong Wang & Kirstin Petersen & Metin Sitti, 2022. "Microrobot collectives with reconfigurable morphologies, behaviors, and functions," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    16. Michael Riedl & Isabelle Mayer & Jack Merrin & Michael Sixt & Björn Hof, 2023. "Synchronization in collectively moving inanimate and living active matter," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    17. Yuanzhao Zhang & Maxime Lucas & Federico Battiston, 2023. "Higher-order interactions shape collective dynamics differently in hypergraphs and simplicial complexes," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-022-35427-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.