IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58920-1.html
   My bibliography  Save this article

Propelling ferrimagnetic domain walls by dynamical frustration

Author

Listed:
  • Dennis Hardt

    (University of Cologne)

  • Reza Doostani

    (University of Cologne)

  • Sebastian Diehl

    (University of Cologne)

  • Nina Ser

    (University of Cologne
    California Institute of Technology)

  • Achim Rosch

    (University of Cologne)

Abstract

Many-particle systems driven out of thermal equilibrium can show properties qualitatively different from any thermal state. Here, we study a ferrimagnet in a weak oscillating magnetic field. In this model, domain walls are not static, but are shown to move actively in a direction chosen by spontaneous symmetry breaking. Thus they act like self-propelling units. Their collective behaviour is reminiscent of other systems with actively moving units studied in the field of ‘active matter’, where, e.g., flocks of birds are investigated. The active motion of the domain walls emerges from ‘dynamical frustration’. The antiferromagnetic xy-order rotates clockwise or anticlockwise, determined by the sign of the ferromagnetic component. This necessarily leads to frustration at a domain wall, which gets resolved by propelling the domain wall with a velocity proportional to the square root of the driving power across large parameter regimes. This motion and strong hydrodynamic interactions lead to a linear growth of the magnetic correlation length over time, much faster than in equilibrium. The dynamical frustration furthermore makes the system highly resilient to noise. The correlation length of the weakly driven one-dimensional system can be orders of magnitude larger than in the corresponding equilibrium system with the same noise level.

Suggested Citation

  • Dennis Hardt & Reza Doostani & Sebastian Diehl & Nina Ser & Achim Rosch, 2025. "Propelling ferrimagnetic domain walls by dynamical frustration," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58920-1
    DOI: 10.1038/s41467-025-58920-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58920-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58920-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michel Fruchart & Ryo Hanai & Peter B. Littlewood & Vincenzo Vitelli, 2021. "Non-reciprocal phase transitions," Nature, Nature, vol. 592(7854), pages 363-369, April.
    2. J. Kasprzak & M. Richard & S. Kundermann & A. Baas & P. Jeambrun & J. M. J. Keeling & F. M. Marchetti & M. H. Szymańska & R. André & J. L. Staehli & V. Savona & P. B. Littlewood & B. Deveaud & Le Si D, 2006. "Bose–Einstein condensation of exciton polaritons," Nature, Nature, vol. 443(7110), pages 409-414, September.
    3. S. O. Demokritov & V. E. Demidov & O. Dzyapko & G. A. Melkov & A. A. Serga & B. Hillebrands & A. N. Slavin, 2006. "Bose–Einstein condensation of quasi-equilibrium magnons at room temperature under pumping," Nature, Nature, vol. 443(7110), pages 430-433, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yoshito Watanabe & Atsushi Miyake & Masaki Gen & Yuta Mizukami & Kenichiro Hashimoto & Takasada Shibauchi & Akihiko Ikeda & Masashi Tokunaga & Takashi Kurumaji & Yusuke Tokunaga & Taka-hisa Arima, 2023. "Double dome structure of the Bose–Einstein condensation in diluted S = 3/2 quantum magnets," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Yuhao Ye & Jinhua Wang & Pan Nie & Huakun Zuo & Xiaokang Li & Kamran Behnia & Zengwei Zhu & Benoît Fauqué, 2024. "Tuning the BCS-BEC crossover of electron-hole pairing with pressure," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    3. Jiaxin Zhao & Antonio Fieramosca & Kevin Dini & Ruiqi Bao & Wei Du & Rui Su & Yuan Luo & Weijie Zhao & Daniele Sanvitto & Timothy C. H. Liew & Qihua Xiong, 2023. "Exciton polariton interactions in Van der Waals superlattices at room temperature," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Yahong Chai & Yuhan Liang & Cancheng Xiao & Yue Wang & Bo Li & Dingsong Jiang & Pratap Pal & Yongjian Tang & Hetian Chen & Yuejie Zhang & Hao Bai & Teng Xu & Wanjun Jiang & Witold Skowroński & Qinghua, 2024. "Voltage control of multiferroic magnon torque for reconfigurable logic-in-memory," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Jianyu Zhang & Mingfeng Chen & Jilei Chen & Kei Yamamoto & Hanchen Wang & Mohammad Hamdi & Yuanwei Sun & Kai Wagner & Wenqing He & Yu Zhang & Ji Ma & Peng Gao & Xiufeng Han & Dapeng Yu & Patrick Malet, 2021. "Long decay length of magnon-polarons in BiFeO3/La0.67Sr0.33MnO3 heterostructures," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    6. B. Divinskiy & H. Merbouche & V. E. Demidov & K. O. Nikolaev & L. Soumah & D. Gouéré & R. Lebrun & V. Cros & Jamal Ben Youssef & P. Bortolotti & A. Anane & S. O. Demokritov, 2021. "Evidence for spin current driven Bose-Einstein condensation of magnons," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    7. Hongjun Xu & Ke Jia & Yuan Huang & Fanqi Meng & Qinghua Zhang & Yu Zhang & Chen Cheng & Guibin Lan & Jing Dong & Jinwu Wei & Jiafeng Feng & Congli He & Zhe Yuan & Mingliang Zhu & Wenqing He & Caihua W, 2023. "Electrical detection of spin pumping in van der Waals ferromagnetic Cr2Ge2Te6 with low magnetic damping," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Etienne Jambon-Puillet & Andrea Testa & Charlotta Lorenz & Robert W. Style & Aleksander A. Rebane & Eric R. Dufresne, 2024. "Phase-separated droplets swim to their dissolution," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Jyoti Prasad Banerjee & Rituparno Mandal & Deb Sankar Banerjee & Shashi Thutupalli & Madan Rao, 2022. "Unjamming and emergent nonreciprocity in active ploughing through a compressible viscoelastic fluid," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    10. Guy Amichay & Liang Li & Máté Nagy & Iain D. Couzin, 2024. "Revealing the mechanism and function underlying pairwise temporal coupling in collective motion," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    11. Martorell, Carles & Calvo, Rubén & Annibale, Alessia & Muñoz, Miguel A., 2024. "Dynamically selected steady states and criticality in non-reciprocal networks," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    12. Xiangzun Wang & Pin-Chuan Chen & Klaus Kroy & Viktor Holubec & Frank Cichos, 2023. "Spontaneous vortex formation by microswimmers with retarded attractions," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    13. Mengjie Wei & Wouter Verstraelen & Konstantinos Orfanakis & Arvydas Ruseckas & Timothy C. H. Liew & Ifor D. W. Samuel & Graham A. Turnbull & Hamid Ohadi, 2022. "Optically trapped room temperature polariton condensate in an organic semiconductor," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    14. Yusuke Morita & Kosuke Yoshioka & Makoto Kuwata-Gonokami, 2022. "Observation of Bose-Einstein condensates of excitons in a bulk semiconductor," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    15. María Barra-Burillo & Unai Muniain & Sara Catalano & Marta Autore & Fèlix Casanova & Luis E. Hueso & Javier Aizpurua & Ruben Esteban & Rainer Hillenbrand, 2021. "Microcavity phonon polaritons from the weak to the ultrastrong phonon–photon coupling regime," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    16. Zhou, Yongjian & Zheng, Zhicheng & Wang, Tao & Peng, Xingguang, 2024. "Swarm dynamics of delayed self-propelled particles with non-reciprocal interactions," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    17. Tingting Wang & Dingyang Zhang & Shiqi Yang & Zhongchong Lin & Quan Chen & Jinbo Yang & Qihuang Gong & Zuxin Chen & Yu Ye & Wenjing Liu, 2023. "Magnetically-dressed CrSBr exciton-polaritons in ultrastrong coupling regime," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    18. Alberto Dinelli & Jérémy O’Byrne & Agnese Curatolo & Yongfeng Zhao & Peter Sollich & Julien Tailleur, 2023. "Non-reciprocity across scales in active mixtures," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    19. Feng Jin & Subhaskar Mandal & Jinqi Wu & Zhenhan Zhang & Wen Wen & Jiahao Ren & Baile Zhang & Timothy C. H. Liew & Qihua Xiong & Rui Su, 2024. "Observation of perovskite topological valley exciton-polaritons at room temperature," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    20. Ellen Fogh & Mithilesh Nayak & Oleksandr Prokhnenko & Maciej Bartkowiak & Koji Munakata & Jian-Rui Soh & Alexandra A. Turrini & Mohamed E. Zayed & Ekaterina Pomjakushina & Hiroshi Kageyama & Hiroyuki , 2024. "Field-induced bound-state condensation and spin-nematic phase in SrCu2(BO3)2 revealed by neutron scattering up to 25.9 T," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58920-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.