IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-59567-8.html
   My bibliography  Save this article

Imaging the evolution of lithium-solid electrolyte interface using operando scanning electron microscopy

Author

Listed:
  • Lihong Zhao

    (University of Houston)

  • Min Feng

    (Brown University)

  • Chaoshan Wu

    (University of Houston
    University of Houston)

  • Liqun Guo

    (University of Houston
    University of Houston)

  • Zhaoyang Chen

    (University of Houston
    University of Houston)

  • Samprash Risal

    (University of Houston)

  • Qing Ai

    (Rice University)

  • Jun Lou

    (Rice University)

  • Zheng Fan

    (University of Houston
    University of Houston)

  • Yue Qi

    (Brown University)

  • Yan Yao

    (University of Houston)

Abstract

The quality of Li–solid electrolyte interface is crucial for the performance of solid-state lithium metal batteries, particularly at low stack pressure, but its dynamics during cell operation remain poorly understood due to a lack of reliable operando characterization techniques. Here, we report the evolution of Li–electrolyte interface with high spatial resolution using operando scanning electron microscopy under realistic operating conditions. By tracking the stripping process of both Li and Li-rich Li-Mg alloy anodes, we show that multiple voids coalesce into a single gap and eventually delaminate the interface in Li, whereas the voids split and collapse to partially recover interfacial contact in Li-Mg. Density functional theory calculations show that the stronger Mg-S interaction at the metal–electrolyte interface attracts Mg toward the interface and repels Li-vacancies into the bulk, resulting in a reduced number of voids. The pressure-dependent voltage profiles of Li and Li-Mg stripping suggest that loss of contact due to void formation, rather than Mg accumulation at the interface, is the origin of high overpotential that limits the utilization of metal anodes. Improved interfacial contact enables stable cycling of all-solid-state lithium full cell at low stack pressure (1 MPa) and moderate rate (2 mA cm−2) simultaneously. The real-time visualization of Li–electrolyte interface dynamics provides critical insights into the rational design of solid-state battery interfaces.

Suggested Citation

  • Lihong Zhao & Min Feng & Chaoshan Wu & Liqun Guo & Zhaoyang Chen & Samprash Risal & Qing Ai & Jun Lou & Zheng Fan & Yue Qi & Yan Yao, 2025. "Imaging the evolution of lithium-solid electrolyte interface using operando scanning electron microscopy," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59567-8
    DOI: 10.1038/s41467-025-59567-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-59567-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-59567-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Paul Albertus & Susan Babinec & Scott Litzelman & Aron Newman, 2018. "Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries," Nature Energy, Nature, vol. 3(1), pages 16-21, January.
    2. Jack Aspinall & Krishnakanth Sada & Hua Guo & Souhardh Kotakadi & Sudarshan Narayanan & Yvonne Chart & Ben Jagger & Emily Milan & Laurence Brassart & David Armstrong & Mauro Pasta, 2024. "The impact of magnesium content on lithium-magnesium alloy electrode performance with argyrodite solid electrolyte," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Kai Yan & Zhenda Lu & Hyun-Wook Lee & Feng Xiong & Po-Chun Hsu & Yuzhang Li & Jie Zhao & Steven Chu & Yi Cui, 2016. "Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth," Nature Energy, Nature, vol. 1(3), pages 1-8, March.
    4. Geoff McConohy & Xin Xu & Teng Cui & Edward Barks & Sunny Wang & Emma Kaeli & Celeste Melamed & X. Wendy Gu & William C. Chueh, 2023. "Mechanical regulation of lithium intrusion probability in garnet solid electrolytes," Nature Energy, Nature, vol. 8(3), pages 241-250, March.
    5. Jeff Sakamoto, 2019. "More pressure needed," Nature Energy, Nature, vol. 4(10), pages 827-828, October.
    6. Yuhgene Liu & Congcheng Wang & Sun Geun Yoon & Sang Yun Han & John A. Lewis & Dhruv Prakash & Emily J. Klein & Timothy Chen & Dae Hoon Kang & Diptarka Majumdar & Rajesh Gopalaswamy & Matthew T. McDowe, 2023. "Aluminum foil negative electrodes with multiphase microstructure for all-solid-state Li-ion batteries," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Luhan Ye & Xin Li, 2021. "A dynamic stability design strategy for lithium metal solid state batteries," Nature, Nature, vol. 593(7858), pages 218-222, May.
    8. Jürgen Janek & Wolfgang G. Zeier, 2023. "Challenges in speeding up solid-state battery development," Nature Energy, Nature, vol. 8(3), pages 230-240, March.
    9. Geoff McConohy & Xin Xu & Teng Cui & Edward Barks & Sunny Wang & Emma Kaeli & Celeste Melamed & X. Wendy Gu & William C. Chueh, 2023. "Author Correction: Mechanical regulation of lithium intrusion probability in garnet solid electrolytes," Nature Energy, Nature, vol. 8(4), pages 423-423, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bowen Zhang & Botao Yuan & Xin Yan & Xiao Han & Jiawei Zhang & Huifeng Tan & Changuo Wang & Pengfei Yan & Huajian Gao & Yuanpeng Liu, 2025. "Atomic mechanism of lithium dendrite penetration in solid electrolytes," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    2. Wonmi Lee & Juho Lee & Taegyun Yu & Hyeong-Jong Kim & Min Kyung Kim & Sungbin Jang & Juhee Kim & Yu-Jin Han & Sunghun Choi & Sinho Choi & Tae-Hee Kim & Sang-Hoon Park & Wooyoung Jin & Gyujin Song & Do, 2024. "Advanced parametrization for the production of high-energy solid-state lithium pouch cells containing polymer electrolytes," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    3. Dong Ju Lee & Yuju Jeon & Jung-Pil Lee & Lanshuang Zhang & Ki Hwan Koh & Feng Li & Anthony U. Mu & Junlin Wu & Yu-Ting Chen & Seamus McNulty & Wei Tang & Marta Vicencio & Dapeng Xu & Jiyoung Kim & Zhe, 2025. "Robust interface and reduced operation pressure enabled by co-rolling dry-process for stable all-solid-state batteries," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    4. Mengchen Liu & Jessica J. Hong & Elias Sebti & Ke Zhou & Shen Wang & Shijie Feng & Tyler Pennebaker & Zeyu Hui & Qiushi Miao & Ershuang Lu & Nimrod Harpak & Sicen Yu & Jianbin Zhou & Jeong Woo Oh & Mi, 2025. "Surface molecular engineering to enable processing of sulfide solid electrolytes in humid ambient air," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    5. Zhi Chang & Huijun Yang & Xingyu Zhu & Ping He & Haoshen Zhou, 2022. "A stable quasi-solid electrolyte improves the safe operation of highly efficient lithium-metal pouch cells in harsh environments," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Chao Wang & Ming Liu & Michel Thijs & Frans G. B. Ooms & Swapna Ganapathy & Marnix Wagemaker, 2021. "High dielectric barium titanate porous scaffold for efficient Li metal cycling in anode-free cells," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    7. Hui Pan & Lei Wang & Yu Shi & Chuanchao Sheng & Sixie Yang & Ping He & Haoshen Zhou, 2024. "A solid-state lithium-ion battery with micron-sized silicon anode operating free from external pressure," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    8. Yiwei You & Dexin Zhang & Zhifeng Wu & Tie-Yu Lü & Xinrui Cao & Yang Sun & Zi-Zhong Zhu & Shunqing Wu, 2025. "Grain boundary amorphization as a strategy to mitigate lithium dendrite growth in solid-state batteries," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    9. Siwu Li & Haolin Zhu & Yuan Liu & Zhilong Han & Linfeng Peng & Shuping Li & Chuang Yu & Shijie Cheng & Jia Xie, 2022. "Codoped porous carbon nanofibres as a potassium metal host for nonaqueous K-ion batteries," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    10. Matthew Burton & Sudarshan Narayanan & Ben Jagger & Lorenz F. Olbrich & Shobhan Dhir & Masafumi Shibata & Michael J. Lain & Robert Astbury & Nicholas Butcher & Mark Copley & Toshikazu Kotaka & Yuichi , 2025. "Techno-economic assessment of thin lithium metal anodes for solid-state batteries," Nature Energy, Nature, vol. 10(1), pages 135-147, January.
    11. Jiaqi Cao & Yuansheng Shi & Aosong Gao & Guangyuan Du & Muhtar Dilxat & Yongfei Zhang & Mohang Cai & Guoyu Qian & Xueyi Lu & Fangyan Xie & Yang Sun & Xia Lu, 2024. "Hierarchical Li electrochemistry using alloy-type anode for high-energy-density Li metal batteries," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    12. Dewu Zeng & Jingming Yao & Long Zhang & Ruonan Xu & Shaojie Wang & Xinlin Yan & Chuang Yu & Lin Wang, 2022. "Promoting favorable interfacial properties in lithium-based batteries using chlorine-rich sulfide inorganic solid-state electrolytes," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    13. Lei Gao & Xinyu Zhang & Jinlong Zhu & Songbai Han & Hao Zhang & Liping Wang & Ruo Zhao & Song Gao & Shuai Li & Yonggang Wang & Dubin Huang & Yusheng Zhao & Ruqiang Zou, 2023. "Boosting lithium ion conductivity of antiperovskite solid electrolyte by potassium ions substitution for cation clusters," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    14. Yantao Wang & Hongtao Qu & Bowen Liu & Xiaoju Li & Jiangwei Ju & Jiedong Li & Shu Zhang & Jun Ma & Chao Li & Zhiwei Hu & Chung-Kai Chang & Hwo-Shuenn Sheu & Longfei Cui & Feng Jiang & Ernst R. H. Eck , 2023. "Self-organized hetero-nanodomains actuating super Li+ conduction in glass ceramics," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    15. Qinghe Cao & Yong Gao & Jie Pu & Xin Zhao & Yuxuan Wang & Jipeng Chen & Cao Guan, 2023. "Gradient design of imprinted anode for stable Zn-ion batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    16. Chanho Kim & Gyutae Nam & Yoojin Ahn & Xueyu Hu & Meilin Liu, 2024. "Nb1.60Ti0.32W0.08O5−δ as negative electrode active material for durable and fast-charging all-solid-state Li-ion batteries," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    17. Burke, Andrew F. & Zhao, Jingyuan, 2025. "Advanced Battery Technologies: Bus, Heavy-Duty Vocational Truck, and Construction Machinery Applications," Institute of Transportation Studies, Working Paper Series qt5zx1k22k, Institute of Transportation Studies, UC Davis.
    18. García, Antonio & Micó, Carlos & Cobo, Mariany Chávez & Elkourchi, Imad & Vemula, Jagadish Babu, 2025. "A comprehensive methodology for characterization and electro-thermal modelling for a next-generation solid-state battery," Energy, Elsevier, vol. 322(C).
    19. Chuanlai Liu & Franz Roters & Dierk Raabe, 2024. "Role of grain-level chemo-mechanics in composite cathode degradation of solid-state lithium batteries," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    20. Giyun Kwon & Hyeokjo Gwon & Youngjoon Bae & Changhoon Jung & Dong-Su Ko & Min Gyu Kim & Kyungho Yoon & Gabin Yoon & Sewon Kim & In-Sun Jung & Sangjun Lee & Taehee Kim & Ju-Sik Kim & Tae Young Kim & Yo, 2025. "Disorder-driven sintering-free garnet-type solid electrolytes," Nature Communications, Nature, vol. 16(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59567-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.