IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-59561-0.html
   My bibliography  Save this article

Surprising pressure-induced magnetic transformations from helimagnetic order to antiferromagnetic state in NiI2

Author

Listed:
  • Qiye Liu

    (Shenzhen Technology University
    Southern University of Science and Technology)

  • Wenjie Su

    (Southern University of Science and Technology)

  • Yue Gu

    (Tsinghua University)

  • Xi Zhang

    (Southern University of Science and Technology)

  • Xiuquan Xia

    (Southern University of Science and Technology)

  • Le Wang

    (Southern University of Science and Technology)

  • Ke Xiao

    (Max Planck Institute of Microstructure Physics)

  • Naipeng Zhang

    (Southern University of Science and Technology)

  • Xiaodong Cui

    (Pokfulam Road)

  • Mingyuan Huang

    (Southern University of Science and Technology)

  • Chengrong Wei

    (Shenzhen Technology University)

  • Xiaolong Zou

    (Tsinghua University)

  • Bin Xi

    (Yangzhou University)

  • Jia-Wei Mei

    (Southern University of Science and Technology)

  • Jun-Feng Dai

    (Shenzhen Technology University
    Southern University of Science and Technology)

Abstract

Interlayer magnetic interactions play a pivotal role in determining the magnetic arrangement within van der Waals (vdW) magnets, and the remarkable tunability of these interactions through applied pressure further enhances their significance. Here, we investigate NiI2 flakes, a representative vdW magnet, under hydrostatic pressures up to 11 GPa. We reveal a notable increase in magnetic transition temperatures for both helimagnetic and antiferromagnetic states, and find that a reversible transition between helimagnetic and antiferromagnetic (AFM) phases at approximately 7 GPa challenges established theoretical and experimental expectations. While the increase in transition temperature aligns with pressure-enhanced overall exchange interaction strengths, we identify the significant role of the second-nearest neighbor interlayer interaction $${J}_{2}^{\perp }$$ J 2 ⊥ , which competes with intra-layer frustration and favors the AFM state as demonstrated in the Monte Carlo simulations. Experimental and simulated results converge on the existence of an intermediate helimagnetic ordered state in NiI2 before transitioning to the AFM state. These findings underscore the pivotal role of interlayer interactions in shaping the magnetic ground state, providing fresh perspectives for innovative applications in nanoscale magnetic device design.

Suggested Citation

  • Qiye Liu & Wenjie Su & Yue Gu & Xi Zhang & Xiuquan Xia & Le Wang & Ke Xiao & Naipeng Zhang & Xiaodong Cui & Mingyuan Huang & Chengrong Wei & Xiaolong Zou & Bin Xi & Jia-Wei Mei & Jun-Feng Dai, 2025. "Surprising pressure-induced magnetic transformations from helimagnetic order to antiferromagnetic state in NiI2," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59561-0
    DOI: 10.1038/s41467-025-59561-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-59561-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-59561-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhe Wang & Ignacio Gutiérrez-Lezama & Nicolas Ubrig & Martin Kroner & Marco Gibertini & Takashi Taniguchi & Kenji Watanabe & Ataç Imamoğlu & Enrico Giannini & Alberto F. Morpurgo, 2018. "Very large tunneling magnetoresistance in layered magnetic semiconductor CrI3," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    2. Kenneth S. Burch & David Mandrus & Je-Geun Park, 2018. "Magnetism in two-dimensional van der Waals materials," Nature, Nature, vol. 563(7729), pages 47-52, November.
    3. Yucheng Jiang & Yangliu Wu & Jinlei Zhang & Jingxuan Wei & Bo Peng & Cheng-Wei Qiu, 2023. "Dilemma in optical identification of single-layer multiferroics," Nature, Nature, vol. 619(7970), pages 40-43, July.
    4. Qian Song & Connor A. Occhialini & Emre Ergeçen & Batyr Ilyas & Danila Amoroso & Paolo Barone & Jesse Kapeghian & Kenji Watanabe & Takashi Taniguchi & Antia S. Botana & Silvia Picozzi & Nuh Gedik & Ri, 2022. "Evidence for a single-layer van der Waals multiferroic," Nature, Nature, vol. 602(7898), pages 601-605, February.
    5. Bevin Huang & Genevieve Clark & Efrén Navarro-Moratalla & Dahlia R. Klein & Ran Cheng & Kyle L. Seyler & Ding Zhong & Emma Schmidgall & Michael A. McGuire & David H. Cobden & Wang Yao & Di Xiao & Pabl, 2017. "Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit," Nature, Nature, vol. 546(7657), pages 270-273, June.
    6. Filippo Pizzocchero & Lene Gammelgaard & Bjarke S. Jessen & José M. Caridad & Lei Wang & James Hone & Peter Bøggild & Timothy J. Booth, 2016. "The hot pick-up technique for batch assembly of van der Waals heterostructures," Nature Communications, Nature, vol. 7(1), pages 1-10, September.
    7. Cheng Gong & Lin Li & Zhenglu Li & Huiwen Ji & Alex Stern & Yang Xia & Ting Cao & Wei Bao & Chenzhe Wang & Yuan Wang & Z. Q. Qiu & R. J. Cava & Steven G. Louie & Jing Xia & Xiang Zhang, 2017. "Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals," Nature, Nature, vol. 546(7657), pages 265-269, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fengrui Yao & Volodymyr Multian & Zhe Wang & Nicolas Ubrig & Jérémie Teyssier & Fan Wu & Enrico Giannini & Marco Gibertini & Ignacio Gutiérrez-Lezama & Alberto F. Morpurgo, 2023. "Multiple antiferromagnetic phases and magnetic anisotropy in exfoliated CrBr3 multilayers," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Zhenyu Sun & Yueqi Su & Aomiao Zhi & Zhicheng Gao & Xu Han & Kang Wu & Lihong Bao & Yuan Huang & Youguo Shi & Xuedong Bai & Peng Cheng & Lan Chen & Kehui Wu & Xuezeng Tian & Changzheng Wu & Baojie Fen, 2024. "Evidence for multiferroicity in single-layer CuCrSe2," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    3. Qifeng Hu & Yuqiang Huang & Yang Wang & Sujuan Ding & Minjie Zhang & Chenqiang Hua & Linjun Li & Xiangfan Xu & Jinbo Yang & Shengjun Yuan & Kenji Watanabe & Takashi Taniguchi & Yunhao Lu & Chuanhong J, 2024. "Ferrielectricity controlled widely-tunable magnetoelectric coupling in van der Waals multiferroics," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Yangliu Wu & Zhaozhuo Zeng & Haipeng Lu & Xiaocang Han & Chendi Yang & Nanshu Liu & Xiaoxu Zhao & Liang Qiao & Wei Ji & Renchao Che & Longjiang Deng & Peng Yan & Bo Peng, 2024. "Coexistence of ferroelectricity and antiferroelectricity in 2D van der Waals multiferroic," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Guangyi Chen & Shaomian Qi & Jianqiao Liu & Di Chen & Jiongjie Wang & Shili Yan & Yu Zhang & Shimin Cao & Ming Lu & Shibing Tian & Kangyao Chen & Peng Yu & Zheng Liu & X. C. Xie & Jiang Xiao & Ryuichi, 2021. "Electrically switchable van der Waals magnon valves," Nature Communications, Nature, vol. 12(1), pages 1-5, December.
    6. Yongxi Ou & Wilson Yanez & Run Xiao & Max Stanley & Supriya Ghosh & Boyang Zheng & Wei Jiang & Yu-Sheng Huang & Timothy Pillsbury & Anthony Richardella & Chaoxing Liu & Tony Low & Vincent H. Crespi & , 2022. "ZrTe2/CrTe2: an epitaxial van der Waals platform for spintronics," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Sihua Feng & Hengli Duan & Hao Tan & Fengchun Hu & Chaocheng Liu & Yao Wang & Zhi Li & Liang Cai & Yuyang Cao & Chao Wang & Zeming Qi & Li Song & Xuguang Liu & Zhihu Sun & Wensheng Yan, 2023. "Intrinsic room-temperature ferromagnetism in a two-dimensional semiconducting metal-organic framework," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Jun Cui & Emil Viñas Boström & Mykhaylo Ozerov & Fangliang Wu & Qianni Jiang & Jiun-Haw Chu & Changcun Li & Fucai Liu & Xiaodong Xu & Angel Rubio & Qi Zhang, 2023. "Chirality selective magnon-phonon hybridization and magnon-induced chiral phonons in a layered zigzag antiferromagnet," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. Xing Cheng & Zhixuan Cheng & Cong Wang & Minglai Li & Pingfan Gu & Shiqi Yang & Yanping Li & Kenji Watanabe & Takashi Taniguchi & Wei Ji & Lun Dai, 2021. "Light helicity detector based on 2D magnetic semiconductor CrI3," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
    10. Shun Akatsuka & Sebastian Esser & Shun Okumura & Ryota Yambe & Rinsuke Yamada & Moritz M. Hirschmann & Seno Aji & Jonathan S. White & Shang Gao & Yoshichika Onuki & Taka-hisa Arima & Taro Nakajima & M, 2024. "Non-coplanar helimagnetism in the layered van-der-Waals metal DyTe3," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    11. Jing-Jing Xian & Cong Wang & Jin-Hua Nie & Rui Li & Mengjiao Han & Junhao Lin & Wen-Hao Zhang & Zhen-Yu Liu & Zhi-Mo Zhang & Mao-Peng Miao & Yangfan Yi & Shiwei Wu & Xiaodie Chen & Junbo Han & Zhengca, 2022. "Spin mapping of intralayer antiferromagnetism and field-induced spin reorientation in monolayer CrTe2," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    12. Jaume Meseguer-Sánchez & Catalin Popescu & José Luis García-Muñoz & Hubertus Luetkens & Grigol Taniashvili & Efrén Navarro-Moratalla & Zurab Guguchia & Elton J. G. Santos, 2021. "Coexistence of structural and magnetic phases in van der Waals magnet CrI3," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    13. C.-W. Chuang & T. Kawakami & K. Sugawara & K. Nakayama & S. Souma & M. Kitamura & K. Amemiya & K. Horiba & H. Kumigashira & G. Kremer & Y. Fagot-Revurat & D. Malterre & C. Bigi & F. Bertran & F. H. Ch, 2025. "Spin-valley coupling enhanced high-TC ferromagnetism in a non-van der Waals monolayer Cr2Se3 on graphene," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    14. Guanghui Cheng & Mohammad Mushfiqur Rahman & Zhiping He & Andres Llacsahuanga Allcca & Avinash Rustagi & Kirstine Aggerbeck Stampe & Yanglin Zhu & Shaohua Yan & Shangjie Tian & Zhiqiang Mao & Hechang , 2022. "Emergence of electric-field-tunable interfacial ferromagnetism in 2D antiferromagnet heterostructures," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    15. ZhuangEn Fu & Piumi I. Samarawickrama & John Ackerman & Yanglin Zhu & Zhiqiang Mao & Kenji Watanabe & Takashi Taniguchi & Wenyong Wang & Yuri Dahnovsky & Mingzhong Wu & TeYu Chien & Jinke Tang & Allan, 2024. "Tunneling current-controlled spin states in few-layer van der Waals magnets," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    16. Farsane Tabataba-Vakili & Huy P. G. Nguyen & Anna Rupp & Kseniia Mosina & Anastasios Papavasileiou & Kenji Watanabe & Takashi Taniguchi & Patrick Maletinsky & Mikhail M. Glazov & Zdenek Sofer & Anvar , 2024. "Doping-control of excitons and magnetism in few-layer CrSBr," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    17. M. T. Birch & L. Powalla & S. Wintz & O. Hovorka & K. Litzius & J. C. Loudon & L. A. Turnbull & V. Nehruji & K. Son & C. Bubeck & T. G. Rauch & M. Weigand & E. Goering & M. Burghard & G. Schütz, 2022. "History-dependent domain and skyrmion formation in 2D van der Waals magnet Fe3GeTe2," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    18. Xingzhi Wang & Qishuo Tan & Tie Li & Zhengguang Lu & Jun Cao & Yanan Ge & Lili Zhao & Jing Tang & Hikari Kitadai & Mingda Guo & Yun-Mei Li & Weigao Xu & Ran Cheng & Dmitry Smirnov & Xi Ling, 2024. "Unveiling the spin evolution in van der Waals antiferromagnets via magneto-exciton effects," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    19. Ruiqing Cheng & Lei Yin & Yao Wen & Baoxing Zhai & Yuzheng Guo & Zhaofu Zhang & Weitu Liao & Wenqi Xiong & Hao Wang & Shengjun Yuan & Jian Jiang & Chuansheng Liu & Jun He, 2022. "Ultrathin ferrite nanosheets for room-temperature two-dimensional magnetic semiconductors," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    20. Wenkai Zhu & Yingmei Zhu & Tong Zhou & Xianpeng Zhang & Hailong Lin & Qirui Cui & Faguang Yan & Ziao Wang & Yongcheng Deng & Hongxin Yang & Lixia Zhao & Igor Žutić & Kirill D. Belashchenko & Kaiyou Wa, 2023. "Large and tunable magnetoresistance in van der Waals ferromagnet/semiconductor junctions," Nature Communications, Nature, vol. 14(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59561-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.