IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42844-9.html
   My bibliography  Save this article

Intrinsic room-temperature ferromagnetism in a two-dimensional semiconducting metal-organic framework

Author

Listed:
  • Sihua Feng

    (University of Science and Technology of China)

  • Hengli Duan

    (University of Science and Technology of China)

  • Hao Tan

    (University of Science and Technology of China)

  • Fengchun Hu

    (University of Science and Technology of China)

  • Chaocheng Liu

    (University of Science and Technology of China)

  • Yao Wang

    (University of Science and Technology of China)

  • Zhi Li

    (University of Science and Technology of China)

  • Liang Cai

    (University of Science and Technology of China)

  • Yuyang Cao

    (University of Science and Technology of China)

  • Chao Wang

    (University of Science and Technology of China)

  • Zeming Qi

    (University of Science and Technology of China)

  • Li Song

    (University of Science and Technology of China)

  • Xuguang Liu

    (University of Science and Technology of China)

  • Zhihu Sun

    (University of Science and Technology of China)

  • Wensheng Yan

    (University of Science and Technology of China)

Abstract

The development of two-dimensional (2D) magnetic semiconductors with room-temperature ferromagnetism is a significant challenge in materials science and is important for the development of next-generation spintronic devices. Herein, we demonstrate that a 2D semiconducting antiferromagnetic Cu-MOF can be endowed with intrinsic room-temperature ferromagnetic coupling using a ligand cleavage strategy to regulate the inner magnetic interaction within the Cu dimers. Using the element-selective X-ray magnetic circular dichroism (XMCD) technique, we provide unambiguous evidence for intrinsic ferromagnetism. Exhaustive structural characterizations confirm that the change of magnetic coupling is caused by the increased distance between Cu atoms within a Cu dimer. Theoretical calculations reveal that the ferromagnetic coupling is enhanced with the increased Cu-Cu distance, which depresses the hybridization between 3d orbitals of nearest Cu atoms. Our work provides an effective avenue to design and fabricate MOF-based semiconducting room-temperature ferromagnetic materials and promotes their practical applications in next-generation spintronic devices.

Suggested Citation

  • Sihua Feng & Hengli Duan & Hao Tan & Fengchun Hu & Chaocheng Liu & Yao Wang & Zhi Li & Liang Cai & Yuyang Cao & Chao Wang & Zeming Qi & Li Song & Xuguang Liu & Zhihu Sun & Wensheng Yan, 2023. "Intrinsic room-temperature ferromagnetism in a two-dimensional semiconducting metal-organic framework," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42844-9
    DOI: 10.1038/s41467-023-42844-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42844-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42844-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Renhao Dong & Zhitao Zhang & Diana C. Tranca & Shengqiang Zhou & Mingchao Wang & Peter Adler & Zhongquan Liao & Feng Liu & Yan Sun & Wujun Shi & Zhe Zhang & Ehrenfried Zschech & Stefan C. B. Mannsfeld, 2018. "A coronene-based semiconducting two-dimensional metal-organic framework with ferromagnetic behavior," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    2. Mathias Augustin & Sarah Jenkins & Richard F. L. Evans & Kostya S. Novoselov & Elton J. G. Santos, 2021. "Properties and dynamics of meron topological spin textures in the two-dimensional magnet CrCl3," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    3. Xing Huang & Peng Sheng & Zeyi Tu & Fengjiao Zhang & Junhua Wang & Hua Geng & Ye Zou & Chong-an Di & Yuanping Yi & Yimeng Sun & Wei Xu & Daoben Zhu, 2015. "A two-dimensional π–d conjugated coordination polymer with extremely high electrical conductivity and ambipolar transport behaviour," Nature Communications, Nature, vol. 6(1), pages 1-8, November.
    4. Bevin Huang & Genevieve Clark & Efrén Navarro-Moratalla & Dahlia R. Klein & Ran Cheng & Kyle L. Seyler & Ding Zhong & Emma Schmidgall & Michael A. McGuire & David H. Cobden & Wang Yao & Di Xiao & Pabl, 2017. "Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit," Nature, Nature, vol. 546(7657), pages 270-273, June.
    5. Chongqing Yang & Renhao Dong & Mao Wang & Petko St. Petkov & Zhitao Zhang & Mingchao Wang & Peng Han & Marco Ballabio & Sascha A. Bräuninger & Zhongquan Liao & Jichao Zhang & Friedrich Schwotzer & Ehr, 2019. "A semiconducting layered metal-organic framework magnet," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    6. Cheng Gong & Lin Li & Zhenglu Li & Huiwen Ji & Alex Stern & Yang Xia & Ting Cao & Wei Bao & Chenzhe Wang & Yuan Wang & Z. Q. Qiu & R. J. Cava & Steven G. Louie & Jing Xia & Xiang Zhang, 2017. "Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals," Nature, Nature, vol. 546(7657), pages 265-269, June.
    7. Chuanhui Huang & Juncai Dong & Weiming Sun & Zhenjie Xue & Jun Ma & Lirong Zheng & Cong Liu & Xiao Li & Kang Zhou & Xuezhi Qiao & Qian Song & Wende Ma & Lan Zhang & Zhenyu Lin & Tie Wang, 2019. "Coordination mode engineering in stacked-nanosheet metal–organic frameworks to enhance catalytic reactivity and structural robustness," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    8. Zhe Wang & Ignacio Gutiérrez-Lezama & Nicolas Ubrig & Martin Kroner & Marco Gibertini & Takashi Taniguchi & Kenji Watanabe & Ataç Imamoğlu & Enrico Giannini & Alberto F. Morpurgo, 2018. "Very large tunneling magnetoresistance in layered magnetic semiconductor CrI3," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    9. You Ba & Shihao Zhuang & Yike Zhang & Yutong Wang & Yang Gao & Hengan Zhou & Mingfeng Chen & Weideng Sun & Quan Liu & Guozhi Chai & Jing Ma & Ying Zhang & Huanfang Tian & Haifeng Du & Wanjun Jiang & C, 2021. "Electric-field control of skyrmions in multiferroic heterostructure via magnetoelectric coupling," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    10. Ahmet Avsar & Cheol-Yeon Cheon & Michele Pizzochero & Mukesh Tripathi & Alberto Ciarrocchi & Oleg V. Yazyev & Andras Kis, 2020. "Probing magnetism in atomically thin semiconducting PtSe2," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jaume Meseguer-Sánchez & Catalin Popescu & José Luis García-Muñoz & Hubertus Luetkens & Grigol Taniashvili & Efrén Navarro-Moratalla & Zurab Guguchia & Elton J. G. Santos, 2021. "Coexistence of structural and magnetic phases in van der Waals magnet CrI3," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    2. Guangyi Chen & Shaomian Qi & Jianqiao Liu & Di Chen & Jiongjie Wang & Shili Yan & Yu Zhang & Shimin Cao & Ming Lu & Shibing Tian & Kangyao Chen & Peng Yu & Zheng Liu & X. C. Xie & Jiang Xiao & Ryuichi, 2021. "Electrically switchable van der Waals magnon valves," Nature Communications, Nature, vol. 12(1), pages 1-5, December.
    3. Sarah Jenkins & Levente Rózsa & Unai Atxitia & Richard F. L. Evans & Kostya S. Novoselov & Elton J. G. Santos, 2022. "Breaking through the Mermin-Wagner limit in 2D van der Waals magnets," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Xing Cheng & Zhixuan Cheng & Cong Wang & Minglai Li & Pingfan Gu & Shiqi Yang & Yanping Li & Kenji Watanabe & Takashi Taniguchi & Wei Ji & Lun Dai, 2021. "Light helicity detector based on 2D magnetic semiconductor CrI3," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
    5. Fengrui Yao & Volodymyr Multian & Zhe Wang & Nicolas Ubrig & Jérémie Teyssier & Fan Wu & Enrico Giannini & Marco Gibertini & Ignacio Gutiérrez-Lezama & Alberto F. Morpurgo, 2023. "Multiple antiferromagnetic phases and magnetic anisotropy in exfoliated CrBr3 multilayers," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Wenkai Zhu & Yingmei Zhu & Tong Zhou & Xianpeng Zhang & Hailong Lin & Qirui Cui & Faguang Yan & Ziao Wang & Yongcheng Deng & Hongxin Yang & Lixia Zhao & Igor Žutić & Kirill D. Belashchenko & Kaiyou Wa, 2023. "Large and tunable magnetoresistance in van der Waals ferromagnet/semiconductor junctions," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    7. Maya Khela & Maciej Da̧browski & Safe Khan & Paul S. Keatley & Ivan Verzhbitskiy & Goki Eda & Robert J. Hicken & Hidekazu Kurebayashi & Elton J. G. Santos, 2023. "Laser-induced topological spin switching in a 2D van der Waals magnet," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Maciej Da̧browski & Shi Guo & Mara Strungaru & Paul S. Keatley & Freddie Withers & Elton J. G. Santos & Robert J. Hicken, 2022. "All-optical control of spin in a 2D van der Waals magnet," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    9. Qifeng Hu & Yuqiang Huang & Yang Wang & Sujuan Ding & Minjie Zhang & Chenqiang Hua & Linjun Li & Xiangfan Xu & Jinbo Yang & Shengjun Yuan & Kenji Watanabe & Takashi Taniguchi & Yunhao Lu & Chuanhong J, 2024. "Ferrielectricity controlled widely-tunable magnetoelectric coupling in van der Waals multiferroics," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    10. Yongxi Ou & Wilson Yanez & Run Xiao & Max Stanley & Supriya Ghosh & Boyang Zheng & Wei Jiang & Yu-Sheng Huang & Timothy Pillsbury & Anthony Richardella & Chaoxing Liu & Tony Low & Vincent H. Crespi & , 2022. "ZrTe2/CrTe2: an epitaxial van der Waals platform for spintronics," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    11. Hongjun Xu & Ke Jia & Yuan Huang & Fanqi Meng & Qinghua Zhang & Yu Zhang & Chen Cheng & Guibin Lan & Jing Dong & Jinwu Wei & Jiafeng Feng & Congli He & Zhe Yuan & Mingliang Zhu & Wenqing He & Caihua W, 2023. "Electrical detection of spin pumping in van der Waals ferromagnetic Cr2Ge2Te6 with low magnetic damping," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    12. Jun Cui & Emil Viñas Boström & Mykhaylo Ozerov & Fangliang Wu & Qianni Jiang & Jiun-Haw Chu & Changcun Li & Fucai Liu & Xiaodong Xu & Angel Rubio & Qi Zhang, 2023. "Chirality selective magnon-phonon hybridization and magnon-induced chiral phonons in a layered zigzag antiferromagnet," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    13. Jing-Jing Xian & Cong Wang & Jin-Hua Nie & Rui Li & Mengjiao Han & Junhao Lin & Wen-Hao Zhang & Zhen-Yu Liu & Zhi-Mo Zhang & Mao-Peng Miao & Yangfan Yi & Shiwei Wu & Xiaodie Chen & Junbo Han & Zhengca, 2022. "Spin mapping of intralayer antiferromagnetism and field-induced spin reorientation in monolayer CrTe2," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    14. Shivam N. Kajale & Thanh Nguyen & Corson A. Chao & David C. Bono & Artittaya Boonkird & Mingda Li & Deblina Sarkar, 2024. "Current-induced switching of a van der Waals ferromagnet at room temperature," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    15. Guanghui Cheng & Mohammad Mushfiqur Rahman & Zhiping He & Andres Llacsahuanga Allcca & Avinash Rustagi & Kirstine Aggerbeck Stampe & Yanglin Zhu & Shaohua Yan & Shangjie Tian & Zhiqiang Mao & Hechang , 2022. "Emergence of electric-field-tunable interfacial ferromagnetism in 2D antiferromagnet heterostructures," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    16. Gaojie Zhang & Fei Guo & Hao Wu & Xiaokun Wen & Li Yang & Wen Jin & Wenfeng Zhang & Haixin Chang, 2022. "Above-room-temperature strong intrinsic ferromagnetism in 2D van der Waals Fe3GaTe2 with large perpendicular magnetic anisotropy," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    17. Weng Fu Io & Sin -Yi Pang & Lok Wing Wong & Yuqian Zhao & Ran Ding & Jianfeng Mao & Yifei Zhao & Feng Guo & Shuoguo Yuan & Jiong Zhao & Jiabao Yi & Jianhua Hao, 2023. "Direct observation of intrinsic room-temperature ferroelectricity in 2D layered CuCrP2S6," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    18. Linfeng Ai & Enze Zhang & Jinshan Yang & Xiaoyi Xie & Yunkun Yang & Zehao Jia & Yuda Zhang & Shanshan Liu & Zihan Li & Pengliang Leng & Xiangyu Cao & Xingdan Sun & Tongyao Zhang & Xufeng Kou & Zheng H, 2021. "Van der Waals ferromagnetic Josephson junctions," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    19. Shuangzan Lu & Deping Guo & Zhengbo Cheng & Yanping Guo & Cong Wang & Jinghao Deng & Yusong Bai & Cheng Tian & Linwei Zhou & Youguo Shi & Jun He & Wei Ji & Chendong Zhang, 2023. "Controllable dimensionality conversion between 1D and 2D CrCl3 magnetic nanostructures," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    20. M. T. Birch & L. Powalla & S. Wintz & O. Hovorka & K. Litzius & J. C. Loudon & L. A. Turnbull & V. Nehruji & K. Son & C. Bubeck & T. G. Rauch & M. Weigand & E. Goering & M. Burghard & G. Schütz, 2022. "History-dependent domain and skyrmion formation in 2D van der Waals magnet Fe3GeTe2," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42844-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.