IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms11894.html
   My bibliography  Save this article

The hot pick-up technique for batch assembly of van der Waals heterostructures

Author

Listed:
  • Filippo Pizzocchero

    (Center for Nanostructured Graphene (CNG), DTU Nanotech, Technical University of Denmark)

  • Lene Gammelgaard

    (Center for Nanostructured Graphene (CNG), DTU Nanotech, Technical University of Denmark)

  • Bjarke S. Jessen

    (Center for Nanostructured Graphene (CNG), DTU Nanotech, Technical University of Denmark)

  • José M. Caridad

    (Center for Nanostructured Graphene (CNG), DTU Nanotech, Technical University of Denmark)

  • Lei Wang

    (Kavli Institute (KIC) at Cornell for Nanoscale Science, Cornell University)

  • James Hone

    (Columbia University)

  • Peter Bøggild

    (Center for Nanostructured Graphene (CNG), DTU Nanotech, Technical University of Denmark)

  • Timothy J. Booth

    (Center for Nanostructured Graphene (CNG), DTU Nanotech, Technical University of Denmark)

Abstract

The assembly of individual two-dimensional materials into van der Waals heterostructures enables the construction of layered three-dimensional materials with desirable electronic and optical properties. A core problem in the fabrication of these structures is the formation of clean interfaces between the individual two-dimensional materials which would affect device performance. We present here a technique for the rapid batch fabrication of van der Waals heterostructures, demonstrated by the controlled production of 22 mono-, bi- and trilayer graphene stacks encapsulated in hexagonal boron nitride with close to 100% yield. For the monolayer devices, we found semiclassical mean-free paths up to 0.9 μm, with the narrowest samples showing clear indications of the transport being affected by boundary scattering. The presented method readily lends itself to fabrication of van der Waals heterostructures in both ambient and controlled atmospheres, while the ability to assemble pre-patterned layers paves the way for complex three-dimensional architectures.

Suggested Citation

  • Filippo Pizzocchero & Lene Gammelgaard & Bjarke S. Jessen & José M. Caridad & Lei Wang & James Hone & Peter Bøggild & Timothy J. Booth, 2016. "The hot pick-up technique for batch assembly of van der Waals heterostructures," Nature Communications, Nature, vol. 7(1), pages 1-10, September.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms11894
    DOI: 10.1038/ncomms11894
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms11894
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms11894?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aaron H. Barajas-Aguilar & Jasen Zion & Ian Sequeira & Andrew Z. Barabas & Takashi Taniguchi & Kenji Watanabe & Eric B. Barrett & Thomas Scaffidi & Javier D. Sanchez-Yamagishi, 2024. "Electrically driven amplification of terahertz acoustic waves in graphene," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    2. Maciej Da̧browski & Shi Guo & Mara Strungaru & Paul S. Keatley & Freddie Withers & Elton J. G. Santos & Robert J. Hicken, 2022. "All-optical control of spin in a 2D van der Waals magnet," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Peter Bøggild, 2023. "Research on scalable graphene faces a reproducibility gap," Nature Communications, Nature, vol. 14(1), pages 1-3, December.
    4. Hae Yeon Lee & Soumya Sarkar & Kate Reidy & Abinash Kumar & Julian Klein & Kenji Watanabe & Takashi Taniguchi & James M. LeBeau & Frances M. Ross & Silvija Gradečak, 2022. "Strong and Localized Luminescence from Interface Bubbles Between Stacked hBN Multilayers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Yue Niu & Lei Li & Zhiying Qi & Hein Htet Aung & Xinyi Han & Reshef Tenne & Yugui Yao & Alla Zak & Yao Guo, 2023. "0D van der Waals interfacial ferroelectricity," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Yuchen Lei & Junwei Ma & Jiaming Luo & Shenyang Huang & Boyang Yu & Chaoyu Song & Qiaoxia Xing & Fanjie Wang & Yuangang Xie & Jiasheng Zhang & Lei Mu & Yixuan Ma & Chong Wang & Hugen Yan, 2023. "Layer-dependent exciton polarizability and the brightening of dark excitons in few-layer black phosphorus," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    7. Saurabh Kumar Srivastav & Ravi Kumar & Christian Spånslätt & K. Watanabe & T. Taniguchi & Alexander D. Mirlin & Yuval Gefen & Anindya Das, 2022. "Determination of topological edge quantum numbers of fractional quantum Hall phases by thermal conductance measurements," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    8. David Barcons Ruiz & Hanan Herzig Sheinfux & Rebecca Hoffmann & Iacopo Torre & Hitesh Agarwal & Roshan Krishna Kumar & Lorenzo Vistoli & Takashi Taniguchi & Kenji Watanabe & Adrian Bachtold & Frank H., 2022. "Engineering high quality graphene superlattices via ion milled ultra-thin etching masks," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    9. Mohit Kumar Jat & Priya Tiwari & Robin Bajaj & Ishita Shitut & Shinjan Mandal & Kenji Watanabe & Takashi Taniguchi & H. R. Krishnamurthy & Manish Jain & Aveek Bid, 2024. "Higher order gaps in the renormalized band structure of doubly aligned hBN/bilayer graphene moiré superlattice," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    10. Robin Huber & Max-Niklas Steffen & Martin Drienovsky & Andreas Sandner & Kenji Watanabe & Takashi Taniguchi & Daniela Pfannkuche & Dieter Weiss & Jonathan Eroms, 2022. "Band conductivity oscillations in a gate-tunable graphene superlattice," Nature Communications, Nature, vol. 13(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms11894. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.