IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58473-3.html
   My bibliography  Save this article

Predeposited lead nucleation sites enable a highly reversible zinc electrode for stable zinc-bromine flow batteries

Author

Listed:
  • Yichan Hu

    (Hunan University
    Shenzhen University of Advanced Technology)

  • Zhiwen Min

    (Shenzhen University of Advanced Technology
    Chinese Academy of Sciences
    University of Macau)

  • Guangyu Zhu

    (Shenzhen University of Advanced Technology)

  • Yuanwei Zhang

    (Chinese Academy of Sciences)

  • Yixian Pei

    (Chinese Academy of Sciences)

  • Cong Chen

    (Qinghai Minzu University)

  • Yuanmiao Sun

    (Shenzhen University of Advanced Technology
    Chinese Academy of Sciences)

  • Guojin Liang

    (Shenzhen University of Advanced Technology
    Chinese Academy of Sciences)

  • Hui-Ming Cheng

    (Shenzhen University of Advanced Technology
    Chinese Academy of Sciences
    Chinese Academy of Sciences)

Abstract

Aqueous zinc-bromine flow batteries are promising for grid storage due to their inherent safety, cost-effectiveness, and high energy density. However, they have a low energy/power density and inferior cycle stability due to irreversible reactions of uncontrolled zinc dendrite growth and hydrogen evolution reaction. Here, we develop a highly reversible carbon felt electrode with uniformly distributed Pb nanoparticles, which can be realized via an effective in situ predeposition strategy. Owing to abundant Pb nanoparticles as zincophilic nucleation sites, the Pb nanoparticles effectively induce uniform Zn deposition with a dendrite-free morphology. Moreover, the Pb-modified electrode accommodates higher hydrogen evolution reaction overpotential to inhibit the H2 evolution. Consequently, the modified electrode-based zinc-bromine flow batteries demonstrate a cumulative plating capacity (23 Ah cm−2) over 2300 h with an average Coulombic efficiency of over 97.4%. This work contributes insights into the design of highly reversible Zn electrode in Zn-based flow batteries.

Suggested Citation

  • Yichan Hu & Zhiwen Min & Guangyu Zhu & Yuanwei Zhang & Yixian Pei & Cong Chen & Yuanmiao Sun & Guojin Liang & Hui-Ming Cheng, 2025. "Predeposited lead nucleation sites enable a highly reversible zinc electrode for stable zinc-bromine flow batteries," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58473-3
    DOI: 10.1038/s41467-025-58473-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58473-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58473-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lin Ma & Marshall A. Schroeder & Oleg Borodin & Travis P. Pollard & Michael S. Ding & Chunsheng Wang & Kang Xu, 2020. "Realizing high zinc reversibility in rechargeable batteries," Nature Energy, Nature, vol. 5(10), pages 743-749, October.
    2. Peipei Zuo & Chunchun Ye & Zhongren Jiao & Jian Luo & Junkai Fang & Ulrich S. Schubert & Neil B. McKeown & T. Leo Liu & Zhengjin Yang & Tongwen Xu, 2023. "Near-frictionless ion transport within triazine framework membranes," Nature, Nature, vol. 617(7960), pages 299-305, May.
    3. Yunxiang Zhao & Shan Guo & Manjing Chen & Bingan Lu & Xiaotan Zhang & Shuquan Liang & Jiang Zhou, 2023. "Tailoring grain boundary stability of zinc-titanium alloy for long-lasting aqueous zinc batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Zhiquan Wei & Zhaodong Huang & Guojin Liang & Yiqiao Wang & Shixun Wang & Yihan Yang & Tao Hu & Chunyi Zhi, 2024. "Starch-mediated colloidal chemistry for highly reversible zinc-based polyiodide redox flow batteries," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Yanxin Yao & Jiafeng Lei & Yang Shi & Fei Ai & Yi-Chun Lu, 2021. "Assessment methods and performance metrics for redox flow batteries," Nature Energy, Nature, vol. 6(6), pages 582-588, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gonggen Tang & Wenyi Wu & Yahua Liu & Kang Peng & Peipei Zuo & Zhengjin Yang & Tongwen Xu, 2025. "Adjusting Hirshfeld charge of TEMPO catholytes for stable all-organic aqueous redox flow batteries," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    2. Bingbing Yuan & Yuhang Zhang & Pengfei Qi & Dongxiao Yang & Ping Hu & Siheng Zhao & Kaili Zhang & Xiaozhuan Zhang & Meng You & Jiabao Cui & Juhui Jiang & Xiangdong Lou & Q. Jason Niu, 2024. "Self-assembled dendrimer polyamide nanofilms with enhanced effective pore area for ion separation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Guojun Lai & Zequan Zhao & Hao Zhang & Xueting Hu & Bingan Lu & Shuquan Liang & Jiang Zhou, 2025. "In-situ positive electrode-electrolyte interphase construction enables stable Ah-level Zn-MnO2 batteries," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    4. Wenjie Fan & Chunliu Zhu & Xingjie Wang & Huanlei Wang & Yue Zhu & Jingwei Chen & Weiqian Tian & Jingyi Wu & Guihua Yu, 2025. "All-natural charge gradient interface for sustainable seawater zinc batteries," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    5. Chang Li & Ryan Kingsbury & Arashdeep Singh Thind & Abhinandan Shyamsunder & Timothy T. Fister & Robert F. Klie & Kristin A. Persson & Linda F. Nazar, 2023. "Enabling selective zinc-ion intercalation by a eutectic electrolyte for practical anodeless zinc batteries," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    6. Zou, Wen-Jiang & Kim, Young-Bae & Jung, Seunghun, 2024. "Capacity fade prediction for vanadium redox flow batteries during long-term operations," Applied Energy, Elsevier, vol. 356(C).
    7. Ruirui Zhao & Haifeng Wang & Haoran Du & Ying Yang & Zhonghui Gao & Long Qie & Yunhui Huang, 2022. "Lanthanum nitrate as aqueous electrolyte additive for favourable zinc metal electrodeposition," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Shengmei Chen & Yiran Ying & Longtao Ma & Daming Zhu & Haitao Huang & Li Song & Chunyi Zhi, 2023. "An asymmetric electrolyte to simultaneously meet contradictory requirements of anode and cathode," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Ziwen Dai & Pengrui Jin & Shushan Yuan & Jiakuan Yang & Kumar Varoon Agrawal & Huanting Wang, 2025. "A molecularly engineered large-area nanoporous atomically thin graphene membrane for ion separation," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    10. Yunxiang Zhao & Shan Guo & Manjing Chen & Bingan Lu & Xiaotan Zhang & Shuquan Liang & Jiang Zhou, 2023. "Tailoring grain boundary stability of zinc-titanium alloy for long-lasting aqueous zinc batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    11. Hong Ma & Hongli Chen & Minfeng Chen & Anxin Li & Xiang Han & Dingtao Ma & Peixin Zhang & Jizhang Chen, 2025. "Biomimetic and biodegradable separator with high modulus and large ionic conductivity enables dendrite-free zinc-ion batteries," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    12. Rémy Richard Jacquemond & Maxime van der Heijden & Emre Burak Boz & Eric Ricardo Carreón Ruiz & Katharine Virginia Greco & Jeffrey Adam Kowalski & Vanesa Muñoz Perales & Fikile Richard Brushett & Kitt, 2024. "Quantifying concentration distributions in redox flow batteries with neutron radiography," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    13. Minghao Zhang & Chenxi Sun & Guanhong Chen & Yuanhong Kang & Zeheng Lv & Jin Yang & Siyang Li & Pengxiang Lin & Rong Tang & Zhipeng Wen & Cheng Chao Li & Jinbao Zhao & Yang Yang, 2024. "Synergetic bifunctional Cu-In alloy interface enables Ah-level Zn metal pouch cells," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    14. Yue Wang & Yixiao Hu & Jian-Ping Guo & Jun Gao & Bo Song & Lei Jiang, 2024. "A physical derivation of high-flux ion transport in biological channel via quantum ion coherence," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    15. Qing Li & Ao Chen & Donghong Wang & Yuwei Zhao & Xiaoqi Wang & Xu Jin & Bo Xiong & Chunyi Zhi, 2022. "Tailoring the metal electrode morphology via electrochemical protocol optimization for long-lasting aqueous zinc batteries," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    16. Gang Lu & Hubao A & Yuanyuan Zhao & Yan Zhao & Hengyue Xu & Wentao Shang & Xi Chen & Jiawei Sun & Huacheng Zhang & Jun Wu & Bing Dai & Bart Bruggen & Raf Dewil & Alicia Kyoungjin An & Shuang Zheng, 2025. "Nano-confined controllable crystallization in supramolecular polymeric membranes for ultra-selective desalination," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    17. Zhiquan Wei & Zhaodong Huang & Guojin Liang & Yiqiao Wang & Shixun Wang & Yihan Yang & Tao Hu & Chunyi Zhi, 2024. "Starch-mediated colloidal chemistry for highly reversible zinc-based polyiodide redox flow batteries," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    18. Shixun Wang & Shengnan Wang & Zhiquan Wei & Yiqiao Wang & Dechao Zhang & Ze Chen & Chunyi Zhi, 2025. "A parts-per-million scale electrolyte additive for durable aqueous zinc batteries," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    19. Chunchun Ye & Anqi Wang & Charlotte Breakwell & Rui Tan & C. Grazia Bezzu & Elwin Hunter-Sellars & Daryl R. Williams & Nigel P. Brandon & Peter A. A. Klusener & Anthony R. Kucernak & Kim E. Jelfs & Ne, 2022. "Development of efficient aqueous organic redox flow batteries using ion-sieving sulfonated polymer membranes," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    20. Ze Chen & Tairan Wang & Zhuoxi Wu & Yue Hou & Ao Chen & Yanbo Wang & Zhaodong Huang & Oliver G. Schmidt & Minshen Zhu & Jun Fan & Chunyi Zhi, 2024. "Polymer hetero-electrolyte enabled solid-state 2.4-V Zn/Li hybrid batteries," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58473-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.