IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-31461-7.html
   My bibliography  Save this article

Tailoring the metal electrode morphology via electrochemical protocol optimization for long-lasting aqueous zinc batteries

Author

Listed:
  • Qing Li

    (City University of Hong Kong)

  • Ao Chen

    (City University of Hong Kong)

  • Donghong Wang

    (Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE))

  • Yuwei Zhao

    (City University of Hong Kong)

  • Xiaoqi Wang

    (Research Center of New Energy)

  • Xu Jin

    (Research Center of New Energy)

  • Bo Xiong

    (Research Center of New Energy)

  • Chunyi Zhi

    (City University of Hong Kong
    Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE))

Abstract

Aqueous zinc metal batteries are a viable candidate for cost-effective energy storage. However, the cycle life of the cell is adversely affected by the morphological evolution of the metal electrode surface upon prolonged cycling. Here, we investigate different electrochemical protocols to favour the formation of stable zinc metal electrode surface morphologies. By coupling electrochemical and optical microscopy measurements, we demonstrate that an initial zinc deposition on the metal electrode allows homogeneous stripping and plating processes during prolonged cycling in symmetric Zn||Zn cell. Interestingly, when an initially plated zinc metal electrode is tested in combination with a manganese dioxide-based positive electrode and a two molar zinc sulfate aqueous electrolyte solution in coin cell configuration, a specific discharge capacity of about 90 mAh g−1 can be delivered after 2000 cycles at around 5.6 mA cm−2 and 25 °C.

Suggested Citation

  • Qing Li & Ao Chen & Donghong Wang & Yuwei Zhao & Xiaoqi Wang & Xu Jin & Bo Xiong & Chunyi Zhi, 2022. "Tailoring the metal electrode morphology via electrochemical protocol optimization for long-lasting aqueous zinc batteries," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31461-7
    DOI: 10.1038/s41467-022-31461-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-31461-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-31461-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lin Ma & Marshall A. Schroeder & Oleg Borodin & Travis P. Pollard & Michael S. Ding & Chunsheng Wang & Kang Xu, 2020. "Realizing high zinc reversibility in rechargeable batteries," Nature Energy, Nature, vol. 5(10), pages 743-749, October.
    2. Giorgia Zampardi & Fabio La Mantia, 2022. "Open challenges and good experimental practices in the research field of aqueous Zn-ion batteries," Nature Communications, Nature, vol. 13(1), pages 1-5, December.
    3. Huayu Qiu & Xiaofan Du & Jingwen Zhao & Yantao Wang & Jiangwei Ju & Zheng Chen & Zhenglin Hu & Dongpeng Yan & Xinhong Zhou & Guanglei Cui, 2019. "Zinc anode-compatible in-situ solid electrolyte interphase via cation solvation modulation," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    4. Nicholas M. Schneider & Jeung Hun Park & Joseph M. Grogan & Daniel A. Steingart & Haim H. Bau & Frances M. Ross, 2017. "Nanoscale evolution of interface morphology during electrodeposition," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    5. Qi Zhang & Jingyi Luan & Xiaobing Huang & Qi Wang & Dan Sun & Yougen Tang & Xiaobo Ji & Haiyan Wang, 2020. "Revealing the role of crystal orientation of protective layers for stable zinc anode," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    6. Chengcheng Fang & Jinxing Li & Minghao Zhang & Yihui Zhang & Fan Yang & Jungwoo Z. Lee & Min-Han Lee & Judith Alvarado & Marshall A. Schroeder & Yangyuchen Yang & Bingyu Lu & Nicholas Williams & Migue, 2019. "Quantifying inactive lithium in lithium metal batteries," Nature, Nature, vol. 572(7770), pages 511-515, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qingshun Nian & Xuan Luo & Digen Ruan & Yecheng Li & Bing-Qing Xiong & Zhuangzhuang Cui & Zihong Wang & Qi Dong & Jiajia Fan & Jinyu Jiang & Jun Ma & Zhihao Ma & Dazhuang Wang & Xiaodi Ren, 2024. "Highly reversible zinc metal anode enabled by strong Brønsted acid and hydrophobic interfacial chemistry," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Xiaotan Zhang & Jiangxu Li & Yanfen Liu & Bingan Lu & Shuquan Liang & Jiang Zhou, 2024. "Single [0001]-oriented zinc metal anode enables sustainable zinc batteries," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruirui Zhao & Haifeng Wang & Haoran Du & Ying Yang & Zhonghui Gao & Long Qie & Yunhui Huang, 2022. "Lanthanum nitrate as aqueous electrolyte additive for favourable zinc metal electrodeposition," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Shuo Jin & Jiefu Yin & Xiaosi Gao & Arpita Sharma & Pengyu Chen & Shifeng Hong & Qing Zhao & Jingxu Zheng & Yue Deng & Yong Lak Joo & Lynden A. Archer, 2022. "Production of fast-charge Zn-based aqueous batteries via interfacial adsorption of ion-oligomer complexes," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Yunxiang Zhao & Shan Guo & Manjing Chen & Bingan Lu & Xiaotan Zhang & Shuquan Liang & Jiang Zhou, 2023. "Tailoring grain boundary stability of zinc-titanium alloy for long-lasting aqueous zinc batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Yu Wang & Tairan Wang & Shuyu Bu & Jiaxiong Zhu & Yanbo Wang & Rong Zhang & Hu Hong & Wenjun Zhang & Jun Fan & Chunyi Zhi, 2023. "Sulfolane-containing aqueous electrolyte solutions for producing efficient ampere-hour-level zinc metal battery pouch cells," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Ze Chen & Tairan Wang & Zhuoxi Wu & Yue Hou & Ao Chen & Yanbo Wang & Zhaodong Huang & Oliver G. Schmidt & Minshen Zhu & Jun Fan & Chunyi Zhi, 2024. "Polymer hetero-electrolyte enabled solid-state 2.4-V Zn/Li hybrid batteries," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Wenyao Zhang & Muyao Dong & Keren Jiang & Diling Yang & Xuehai Tan & Shengli Zhai & Renfei Feng & Ning Chen & Graham King & Hao Zhang & Hongbo Zeng & Hui Li & Markus Antonietti & Zhi Li, 2022. "Self-repairing interphase reconstructed in each cycle for highly reversible aqueous zinc batteries," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. Pietro Iurilli & Luigi Luppi & Claudio Brivio, 2022. "Non-Invasive Detection of Lithium-Metal Battery Degradation," Energies, MDPI, vol. 15(19), pages 1-14, September.
    8. Kai Yang & Hongchang Cai & Suran Li & Yu Wang & Xue Zhang & Zhenxuan Wu & Yilin Lai & Minella Bezha & Klara Bezha & Naoto Nagaoka & Yuejiu Zheng & Xuning Feng, 2024. "Research on Quantitative Diagnosis of Dendrites Based on Titration Gas Chromatography Technology," Energies, MDPI, vol. 17(10), pages 1-19, May.
    9. Matthew Sadd & Shizhao Xiong & Jacob R. Bowen & Federica Marone & Aleksandar Matic, 2023. "Investigating microstructure evolution of lithium metal during plating and stripping via operando X-ray tomographic microscopy," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Hyeokjin Kwon & Hyun-Ji Choi & Jung-kyu Jang & Jinhong Lee & Jinkwan Jung & Wonjun Lee & Youngil Roh & Jaewon Baek & Dong Jae Shin & Ju-Hyuk Lee & Nam-Soon Choi & Ying Shirley Meng & Hee-Tak Kim, 2023. "Weakly coordinated Li ion in single-ion-conductor-based composite enabling low electrolyte content Li-metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    11. Chao Chen & Jiaming Zhang & Benrui Hu & Qianwen Liang & Xunhui Xiong, 2023. "Dynamic gel as artificial interphase layer for ultrahigh-rate and large-capacity lithium metal anode," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    12. Chang Li & Ryan Kingsbury & Arashdeep Singh Thind & Abhinandan Shyamsunder & Timothy T. Fister & Robert F. Klie & Kristin A. Persson & Linda F. Nazar, 2023. "Enabling selective zinc-ion intercalation by a eutectic electrolyte for practical anodeless zinc batteries," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    13. Jiaqi Cao & Yuansheng Shi & Aosong Gao & Guangyuan Du & Muhtar Dilxat & Yongfei Zhang & Mohang Cai & Guoyu Qian & Xueyi Lu & Fangyan Xie & Yang Sun & Xia Lu, 2024. "Hierarchical Li electrochemistry using alloy-type anode for high-energy-density Li metal batteries," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    14. Qinghe Cao & Yong Gao & Jie Pu & Xin Zhao & Yuxuan Wang & Jipeng Chen & Cao Guan, 2023. "Gradient design of imprinted anode for stable Zn-ion batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    15. Xiaozhe Zhang & Pan Xu & Jianing Duan & Xiaodong Lin & Juanjuan Sun & Wenjie Shi & Hewei Xu & Wenjie Dou & Qingyi Zheng & Ruming Yuan & Jiande Wang & Yan Zhang & Shanshan Yu & Zehan Chen & Mingsen Zhe, 2024. "A dicarbonate solvent electrolyte for high performance 5 V-Class Lithium-based batteries," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    16. Yanbo Wang & Qing Li & Hu Hong & Shuo Yang & Rong Zhang & Xiaoqi Wang & Xu Jin & Bo Xiong & Shengchi Bai & Chunyi Zhi, 2023. "Lean-water hydrogel electrolyte for zinc ion batteries," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    17. Shengmei Chen & Yiran Ying & Longtao Ma & Daming Zhu & Haitao Huang & Li Song & Chunyi Zhi, 2023. "An asymmetric electrolyte to simultaneously meet contradictory requirements of anode and cathode," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    18. Yan Zhao & Tianhong Zhou & Timur Ashirov & Mario El Kazzi & Claudia Cancellieri & Lars P. H. Jeurgens & Jang Wook Choi & Ali Coskun, 2022. "Fluorinated ether electrolyte with controlled solvation structure for high voltage lithium metal batteries," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    19. Suting Weng & Xiao Zhang & Gaojing Yang & Simeng Zhang & Bingyun Ma & Qiuyan Liu & Yue Liu & Chengxin Peng & Huixin Chen & Hailong Yu & Xiulin Fan & Tao Cheng & Liquan Chen & Yejing Li & Zhaoxiang Wan, 2023. "Temperature-dependent interphase formation and Li+ transport in lithium metal batteries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    20. Li Huang & Jian Gao & Zhijie Bi & Ning Zhao & Jipeng Wu & Qiu Fang & Xuefeng Wang & Yong Wan & Xiangxin Guo, 2022. "Comparative Study of Stability against Moisture for Solid Garnet Electrolytes with Different Dopants," Energies, MDPI, vol. 15(9), pages 1-9, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-31461-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.