IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58426-w.html
   My bibliography  Save this article

Selective adsorption of CO2 in TAMOF-1 for the separation of CO2/CH4 gas mixtures

Author

Listed:
  • Santiago Capelo-Avilés

    (The Barcelona Institut of Science and Technology (BIST)
    Marcel.lí Domingo s/n)

  • Mabel Fez-Febré

    (The Barcelona Institut of Science and Technology (BIST)
    Marcel.lí Domingo s/n
    S. A. Juan Esplandiú 15)

  • Salvador R. G. Balestra

    (Universidad de Sevilla)

  • Juanjo Cabezas-Giménez

    (The Barcelona Institut of Science and Technology (BIST)
    Marcel.lí Domingo s/n
    08380 Malgrat de Mar)

  • Raiana Tomazini de Oliveira

    (The Barcelona Institut of Science and Technology (BIST))

  • Irene I. Gallo Stampino

    (The Barcelona Institut of Science and Technology (BIST))

  • Anton Vidal-Ferran
  • Jesús González-Cobos

    (The Barcelona Institut of Science and Technology (BIST)
    2 Avenue A. Einstein)

  • Vanesa Lillo

    (The Barcelona Institut of Science and Technology (BIST))

  • Oscar Fabelo

    (71 Avenue des Martyrs)

  • Eduardo C. Escudero-Adán

    (The Barcelona Institut of Science and Technology (BIST))

  • Larry R. Falvello

    (CSIC-Universidad de Zaragoza)

  • José B. Parra

    (Francisco Pintado Fe 26)

  • Paolo Rumori

    (Cra. de Valldemossa km 7.5)

  • Gemma Turnes Palomino

    (Cra. de Valldemossa km 7.5)

  • Carlos Palomino Cabello

    (Cra. de Valldemossa km 7.5)

  • Stefano Giancola

    (Orchestra Scientific S.L. Av. Països Catalans 16)

  • Sofia Calero

    (Eindhoven University of Technology)

  • José Ramón Galán-Mascarós

    (The Barcelona Institut of Science and Technology (BIST))

Abstract

TAMOF-1 is a robust, highly porous metal–organic framework built from Cu2+ centers linked by a L-histidine derivative. Thanks to its high porosity and homochirality, TAMOF-1 has shown interesting molecular recognition properties, being able to resolve racemic mixtures of small organic molecules in gas and liquid phases. Now, we have discovered that TAMOF-1 also offers a competitive performance as solid adsorbent for CO2 physisorption, offering promising CO2 adsorption capacity ( > 3.8 mmol g–1) and CO2/CH4 Ideal Adsorbed Solution Theory (IAST) selectivity ( > 40) at ambient conditions. Moreover, the material exhibits favorable adsorption kinetics under dynamic conditions, demonstrating good stability in high-humidity environments and minimal degradation in strongly acidic media. We have identified the key interactions of CO2 within the TAMOF-1 framework by a combination of structural (neutron diffraction), spectroscopic and theoretical analyses which conclude a dual-site adsorption mechanism with the majority of adsorbed CO2 molecules occupying the empty voids in the TAMOF-1 channels without strong, directional supramolecular interactions. This very weak dominant binding opens the possibility of a low energy regeneration process for convenient CO2 purification. These features identify TAMOF-1 as a viable solid-state adsorbent for the realization of affordable biogas upgrading.

Suggested Citation

  • Santiago Capelo-Avilés & Mabel Fez-Febré & Salvador R. G. Balestra & Juanjo Cabezas-Giménez & Raiana Tomazini de Oliveira & Irene I. Gallo Stampino & Anton Vidal-Ferran & Jesús González-Cobos & Vanesa, 2025. "Selective adsorption of CO2 in TAMOF-1 for the separation of CO2/CH4 gas mixtures," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58426-w
    DOI: 10.1038/s41467-025-58426-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58426-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58426-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Omid T. Qazvini & Ravichandar Babarao & Shane G. Telfer, 2021. "Selective capture of carbon dioxide from hydrocarbons using a metal-organic framework," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yifan Gu & Jia-Jia Zheng & Ken-ichi Otake & Shigeyoshi Sakaki & Hirotaka Ashitani & Yoshiki Kubota & Shogo Kawaguchi & Ming-Shui Yao & Ping Wang & Ying Wang & Fengting Li & Susumu Kitagawa, 2023. "Soft corrugated channel with synergistic exclusive discrimination gating for CO2 recognition in gas mixture," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Amira Alazmi & Sabina A. Nicolae & Pierpaolo Modugno & Bashir E. Hasanov & Maria M. Titirici & Pedro M. F. J. Costa, 2021. "Activated Carbon from Palm Date Seeds for CO 2 Capture," IJERPH, MDPI, vol. 18(22), pages 1-11, November.
    3. Jin-Sheng Zou & Zhi-Peng Wang & Yassin H. Andaloussi & Jiapeng Xue & Wanli Zhang & Bryan E. G. Lucier & Zeyang Zhang & Yanan Jia & Xue-Cui Wu & Jiahan Li & Yining Huang & Michael J. Zaworotko & Guangj, 2025. "Benchmarking selective capture of trace CO2 from C2H2 using an amine-functionalized adsorbent," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    4. Goharshadi, Elaheh K. & Vojdani Saghir, Siavosh & Niazi, Zohreh & Shafaee, Masoomeh & Sajjadizadeh, Halimeh-Sadat & Karimi-Nazarabad, Mahdi & Peighambari-kalat, Saeid & Goharshadi, Kimiya & Nejati, Ma, 2025. "Functionalized wood sponges: Advanced biomass materials for renewable energies, freshwater production, energy storage, and environmental remediation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 209(C).
    5. Ga, Seongbin & An, Nahyeon & Lee, Gi Yeol & Joo, Chonghyo & Kim, Junghwan, 2024. "Economic analysis with multiscale high-throughput screening for covalent organic framework adsorbents in ammonia-based green hydrogen separation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    6. Zhang, Chen & Zhang, Xinqi & Su, Tingyu & Zhang, Yiheng & Wang, Liwei & Zhu, Xuancan, 2023. "Modification schemes of efficient sorbents for trace CO2 capture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    7. Ga, Seongbin & An, Nahyeon & Lee, Gi Yeol & Joo, Chonghyo & Kim, Junghwan, 2024. "Multidisciplinary high-throughput screening of metal–organic framework for ammonia-based green hydrogen production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    8. Shi, Jinsong & Xu, Jianguo & Cui, Hongmin & Yan, Nanfu & Zou, Jiyong & Liu, Yuewei & You, Shengyong, 2023. "Synthesis of highly porous N-doped hollow carbon nanospheres with a combined soft template-chemical activation method for CO2 capture," Energy, Elsevier, vol. 280(C).
    9. Sirinapa Wongwilawan & Thien S. Nguyen & Thi Phuong Nga Nguyen & Abdulhadi Alhaji & Wonki Lim & Yeongran Hong & Jin Su Park & Mert Atilhan & Bumjoon J. Kim & Mohamed Eddaoudi & Cafer T. Yavuz, 2023. "Non-solvent post-modifications with volatile reagents for remarkably porous ketone functionalized polymers of intrinsic microporosity," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Hengcong Huang & Luyao Wang & Xiaoyu Zhang & Hongshuo Zhao & Yifan Gu, 2022. "CO 2 -Selective Capture from Light Hydrocarbon Mixtures by Metal-Organic Frameworks: A Review," Clean Technol., MDPI, vol. 5(1), pages 1-24, December.
    11. Zhaoqiang Zhang & Yinlin Chen & Kungang Chai & Chengjun Kang & Shing Bo Peh & He Li & Junyu Ren & Xiansong Shi & Xue Han & Catherine Dejoie & Sarah J. Day & Sihai Yang & Dan Zhao, 2023. "Temperature-dependent rearrangement of gas molecules in ultramicroporous materials for tunable adsorption of CO2 and C2H2," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58426-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.