IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v280y2023ics0360544223015669.html
   My bibliography  Save this article

Synthesis of highly porous N-doped hollow carbon nanospheres with a combined soft template-chemical activation method for CO2 capture

Author

Listed:
  • Shi, Jinsong
  • Xu, Jianguo
  • Cui, Hongmin
  • Yan, Nanfu
  • Zou, Jiyong
  • Liu, Yuewei
  • You, Shengyong

Abstract

In the present study, N-doped hollow carbon nanospheres (NHCNs) were synthesized with a combined soft template-chemical activation method. Spherical hollow hydrochar was prepared from glucose with the assistance of dual soft templates, and was then chemically activated with KHCO3 and urea to produce the NHCNs. Effects of urea addition and activation temperature on the NHCNs’ physicochemical properties were revealed. The NHCNs were endowed with rich N-doping and developed porosity. The sample activated at 800 °C (NHCN2800) showed an impressive specific surface area of 3234 m2/g. The proposed method could also be extended to the synthesis of N, S co-doped hollow carbon nanospheres. We then investigated CO2 adsorption performances of the NHCNs. At 25 °C and 1 bar, the best CO2 uptake of the NHCNs was 4.36 mmol/g; at 20 bar, it increased to a record high level of 23.62 mmol/g. Correlations between textural characteristics/N-doping and CO2 adsorption at 1/20 bar were analyzed and discussed. The current study indicated that the obtained NHCNs had great potential for applications in both pre- and post-combustion CO2 capture.

Suggested Citation

  • Shi, Jinsong & Xu, Jianguo & Cui, Hongmin & Yan, Nanfu & Zou, Jiyong & Liu, Yuewei & You, Shengyong, 2023. "Synthesis of highly porous N-doped hollow carbon nanospheres with a combined soft template-chemical activation method for CO2 capture," Energy, Elsevier, vol. 280(C).
  • Handle: RePEc:eee:energy:v:280:y:2023:i:c:s0360544223015669
    DOI: 10.1016/j.energy.2023.128172
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223015669
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128172?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fei Xu & Zhiwei Tang & Siqi Huang & Luyi Chen & Yeru Liang & Weicong Mai & Hui Zhong & Ruowen Fu & Dingcai Wu, 2015. "Facile synthesis of ultrahigh-surface-area hollow carbon nanospheres for enhanced adsorption and energy storage," Nature Communications, Nature, vol. 6(1), pages 1-12, November.
    2. Omid T. Qazvini & Ravichandar Babarao & Shane G. Telfer, 2021. "Selective capture of carbon dioxide from hydrocarbons using a metal-organic framework," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    3. Fei Xu & Zhiwei Tang & Siqi Huang & Luyi Chen & Yeru Liang & Weicong Mai & Hui Zhong & Ruowen Fu & Dingcai Wu, 2015. "Erratum: Facile synthesis of ultrahigh-surface-area hollow carbon nanospheres for enhanced adsorption and energy storage," Nature Communications, Nature, vol. 6(1), pages 1-2, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kangkang Ge & Hui Shao & Encarnacion Raymundo-Piñero & Pierre-Louis Taberna & Patrice Simon, 2024. "Cation desolvation-induced capacitance enhancement in reduced graphene oxide (rGO)," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Shengjun Du & Jiawu Huang & Matthew R. Ryder & Luke L. Daemen & Cuiting Yang & Hongjun Zhang & Panchao Yin & Yuyan Lai & Jing Xiao & Sheng Dai & Banglin Chen, 2023. "Probing sub-5 Ångstrom micropores in carbon for precise light olefin/paraffin separation," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Yifan Gu & Jia-Jia Zheng & Ken-ichi Otake & Shigeyoshi Sakaki & Hirotaka Ashitani & Yoshiki Kubota & Shogo Kawaguchi & Ming-Shui Yao & Ping Wang & Ying Wang & Fengting Li & Susumu Kitagawa, 2023. "Soft corrugated channel with synergistic exclusive discrimination gating for CO2 recognition in gas mixture," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Amira Alazmi & Sabina A. Nicolae & Pierpaolo Modugno & Bashir E. Hasanov & Maria M. Titirici & Pedro M. F. J. Costa, 2021. "Activated Carbon from Palm Date Seeds for CO 2 Capture," IJERPH, MDPI, vol. 18(22), pages 1-11, November.
    5. Zhang, Chen & Zhang, Xinqi & Su, Tingyu & Zhang, Yiheng & Wang, Liwei & Zhu, Xuancan, 2023. "Modification schemes of efficient sorbents for trace CO2 capture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    6. Sirinapa Wongwilawan & Thien S. Nguyen & Thi Phuong Nga Nguyen & Abdulhadi Alhaji & Wonki Lim & Yeongran Hong & Jin Su Park & Mert Atilhan & Bumjoon J. Kim & Mohamed Eddaoudi & Cafer T. Yavuz, 2023. "Non-solvent post-modifications with volatile reagents for remarkably porous ketone functionalized polymers of intrinsic microporosity," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Hengcong Huang & Luyao Wang & Xiaoyu Zhang & Hongshuo Zhao & Yifan Gu, 2022. "CO 2 -Selective Capture from Light Hydrocarbon Mixtures by Metal-Organic Frameworks: A Review," Clean Technol., MDPI, vol. 5(1), pages 1-24, December.
    8. Zhaoqiang Zhang & Yinlin Chen & Kungang Chai & Chengjun Kang & Shing Bo Peh & He Li & Junyu Ren & Xiansong Shi & Xue Han & Catherine Dejoie & Sarah J. Day & Sihai Yang & Dan Zhao, 2023. "Temperature-dependent rearrangement of gas molecules in ultramicroporous materials for tunable adsorption of CO2 and C2H2," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:280:y:2023:i:c:s0360544223015669. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.