IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58359-4.html
   My bibliography  Save this article

In-memory ferroelectric differentiator

Author

Listed:
  • Guangdi Feng

    (East China Normal University
    Chongqing Institute of East China Normal University)

  • Xiaoming Zhao

    (East China Normal University)

  • Xiaoyue Huang

    (East China Normal University)

  • Xiaoxu Zhang

    (East China Normal University)

  • Yangyang Wang

    (East China Normal University)

  • Wei Li

    (East China Normal University)

  • Luqiu Chen

    (East China Normal University)

  • Shenglan Hao

    (East China Normal University)

  • Qiuxiang Zhu

    (East China Normal University)

  • Yachin Ivry

    (Technion-Israel Institute of Technology)

  • Brahim Dkhil

    (Laboratoire SPMS)

  • Bobo Tian

    (East China Normal University
    Chongqing Institute of East China Normal University)

  • Peng Zhou

    (Fudan University)

  • Junhao Chu

    (East China Normal University
    Fudan University)

  • Chungang Duan

    (East China Normal University
    Shanxi University)

Abstract

Differential calculus is the cornerstone of many disciplines, spanning the breadth of modern mathematics, physics, computer science, and engineering. Its applications are fundamental to theoretical progress and practical solutions. However, the current state of digital differential technology often requires complex implementations, which struggle to meet the extensive demands of the ubiquitous edge computing in the intelligence age. To face these challenges, we propose an in-memory differential computation that capitalizes on the dynamic behavior of ferroelectric domain reversal to efficiently extract information differences. This strategy produces differential information directly within the memory itself, which considerably reduces the volume of data transmission and operational energy consumption. We successfully illustrate the effectiveness of this technique in a variety of tasks, including derivative function solving, the moving object extraction and image discrepancy identification, using an in-memory differentiator constructed with a crossbar array of 1600-unit ferroelectric polymer capacitors. Our research offers an efficient hardware analogue differential computing, which is crucial for accelerating mathematical processing and real-time visual feedback systems.

Suggested Citation

  • Guangdi Feng & Xiaoming Zhao & Xiaoyue Huang & Xiaoxu Zhang & Yangyang Wang & Wei Li & Luqiu Chen & Shenglan Hao & Qiuxiang Zhu & Yachin Ivry & Brahim Dkhil & Bobo Tian & Peng Zhou & Junhao Chu & Chun, 2025. "In-memory ferroelectric differentiator," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58359-4
    DOI: 10.1038/s41467-025-58359-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58359-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58359-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhen Luo & Zijian Wang & Zeyu Guan & Chao Ma & Letian Zhao & Chuanchuan Liu & Haoyang Sun & He Wang & Yue Lin & Xi Jin & Yuewei Yin & Xiaoguang Li, 2022. "High-precision and linear weight updates by subnanosecond pulses in ferroelectric tunnel junction for neuro-inspired computing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Xunzhao Yin & Yu Qian & Alptekin Vardar & Marcel Günther & Franz Müller & Nellie Laleni & Zijian Zhao & Zhouhang Jiang & Zhiguo Shi & Yiyu Shi & Xiao Gong & Cheng Zhuo & Thomas Kämpfe & Kai Ni, 2024. "Ferroelectric compute-in-memory annealer for combinatorial optimization problems," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. B. B. Tian & J. L. Wang & S. Fusil & Y. Liu & X. L. Zhao & S. Sun & H. Shen & T. Lin & J. L. Sun & C. G. Duan & M. Bibes & A. Barthélémy & B. Dkhil & V. Garcia & X. J. Meng & J. H. Chu, 2016. "Tunnel electroresistance through organic ferroelectrics," Nature Communications, Nature, vol. 7(1), pages 1-6, September.
    4. Guangdi Feng & Yifei Liu & Qiuxiang Zhu & Zhenyu Feng & Shengwen Luo & Cuijie Qin & Luqiu Chen & Yu Xu & Haonan Wang & Muhammad Zubair & Ke Qu & Chang Yang & Shenglan Hao & Fangyu Yue & Chungang Duan , 2024. "Giant tunnel electroresistance through a Van der Waals junction by external ferroelectric polarization," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Boyuan Cui & Zhen Fan & Wenjie Li & Yihong Chen & Shuai Dong & Zhengwei Tan & Shengliang Cheng & Bobo Tian & Ruiqiang Tao & Guo Tian & Deyang Chen & Zhipeng Hou & Minghui Qin & Min Zeng & Xubing Lu & , 2022. "Ferroelectric photosensor network: an advanced hardware solution to real-time machine vision," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Sören Boyn & Julie Grollier & Gwendal Lecerf & Bin Xu & Nicolas Locatelli & Stéphane Fusil & Stéphanie Girod & Cécile Carrétéro & Karin Garcia & Stéphane Xavier & Jean Tomas & Laurent Bellaiche & Manu, 2017. "Learning through ferroelectric domain dynamics in solid-state synapses," Nature Communications, Nature, vol. 8(1), pages 1-7, April.
    7. Zhengwu Liu & Jianshi Tang & Bin Gao & Peng Yao & Xinyi Li & Dingkun Liu & Ying Zhou & He Qian & Bo Hong & Huaqiang Wu, 2020. "Neural signal analysis with memristor arrays towards high-efficiency brain–machine interfaces," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhiwei Chen & Wenjie Li & Zhen Fan & Shuai Dong & Yihong Chen & Minghui Qin & Min Zeng & Xubing Lu & Guofu Zhou & Xingsen Gao & Jun-Ming Liu, 2023. "All-ferroelectric implementation of reservoir computing," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Rengjian Yu & Lihua He & Changsong Gao & Xianghong Zhang & Enlong Li & Tailiang Guo & Wenwu Li & Huipeng Chen, 2022. "Programmable ferroelectric bionic vision hardware with selective attention for high-precision image classification," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Guangdi Feng & Qiuxiang Zhu & Xuefeng Liu & Luqiu Chen & Xiaoming Zhao & Jianquan Liu & Shaobing Xiong & Kexiang Shan & Zhenzhong Yang & Qinye Bao & Fangyu Yue & Hui Peng & Rong Huang & Xiaodong Tang , 2024. "A ferroelectric fin diode for robust non-volatile memory," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Haipeng Lin & Jiali Ou & Zhen Fan & Xiaobing Yan & Wenjie Hu & Boyuan Cui & Jikang Xu & Wenjie Li & Zhiwei Chen & Biao Yang & Kun Liu & Linyuan Mo & Meixia Li & Xubing Lu & Guofu Zhou & Xingsen Gao & , 2025. "In situ training of an in-sensor artificial neural network based on ferroelectric photosensors," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    5. Tao Li & Yongyi Wu & Guoliang Yu & Shengxian Li & Yifeng Ren & Yadong Liu & Jiarui Liu & Hao Feng & Yu Deng & Mingxing Chen & Zhenyu Zhang & Tai Min, 2024. "Realization of sextuple polarization states and interstate switching in antiferroelectric CuInP2S6," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Kim, Tae-Hyeon & Kim, Sungjoon & Hong, Kyungho & Park, Jinwoo & Hwang, Yeongjin & Park, Byung-Gook & Kim, Hyungjin, 2021. "Multilevel switching memristor by compliance current adjustment for off-chip training of neuromorphic system," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    7. Djohan Bonnet & Tifenn Hirtzlin & Atreya Majumdar & Thomas Dalgaty & Eduardo Esmanhotto & Valentina Meli & Niccolo Castellani & Simon Martin & Jean-François Nodin & Guillaume Bourgeois & Jean-Michel P, 2023. "Bringing uncertainty quantification to the extreme-edge with memristor-based Bayesian neural networks," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    8. Xiangpeng Liang & Yanan Zhong & Jianshi Tang & Zhengwu Liu & Peng Yao & Keyang Sun & Qingtian Zhang & Bin Gao & Hadi Heidari & He Qian & Huaqiang Wu, 2022. "Rotating neurons for all-analog implementation of cyclic reservoir computing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    9. Bin Gao & Ying Zhou & Qingtian Zhang & Shuanglin Zhang & Peng Yao & Yue Xi & Qi Liu & Meiran Zhao & Wenqiang Zhang & Zhengwu Liu & Xinyi Li & Jianshi Tang & He Qian & Huaqiang Wu, 2022. "Memristor-based analogue computing for brain-inspired sound localization with in situ training," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    10. Tian Zhang & Xin Guo & Pan Wang & Xinyi Fan & Zichen Wang & Yan Tong & Decheng Wang & Limin Tong & Linjun Li, 2024. "High performance artificial visual perception and recognition with a plasmon-enhanced 2D material neural network," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    11. Shuzhi Liu & Jianmin Zeng & Zhixin Wu & Han Hu & Ao Xu & Xiaohe Huang & Weilin Chen & Qilai Chen & Zhe Yu & Yinyu Zhao & Rong Wang & Tingting Han & Chao Li & Pingqi Gao & Hyunwoo Kim & Seung Jae Baik , 2023. "An ultrasmall organic synapse for neuromorphic computing," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    12. Rohit Abraham John & Yiğit Demirağ & Yevhen Shynkarenko & Yuliia Berezovska & Natacha Ohannessian & Melika Payvand & Peng Zeng & Maryna I. Bodnarchuk & Frank Krumeich & Gökhan Kara & Ivan Shorubalko &, 2022. "Reconfigurable halide perovskite nanocrystal memristors for neuromorphic computing," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    13. Yulin Feng & Yizhou Zhang & Zheng Zhou & Peng Huang & Lifeng Liu & Xiaoyan Liu & Jinfeng Kang, 2024. "Memristor-based storage system with convolutional autoencoder-based image compression network," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    14. Yueyang Jia & Qianqian Yang & Yue-Wen Fang & Yue Lu & Maosong Xie & Jianyong Wei & Jianjun Tian & Linxing Zhang & Rui Yang, 2024. "Giant tunnelling electroresistance in atomic-scale ferroelectric tunnel junctions," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    15. Fei Xue & Xin He & Yinchang Ma & Dongxing Zheng & Chenhui Zhang & Lain-Jong Li & Jr-Hau He & Bin Yu & Xixiang Zhang, 2021. "Unraveling the origin of ferroelectric resistance switching through the interfacial engineering of layered ferroelectric-metal junctions," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    16. Jangsaeng Kim & Eun Chan Park & Wonjun Shin & Ryun-Han Koo & Chang-Hyeon Han & He Young Kang & Tae Gyu Yang & Youngin Goh & Kilho Lee & Daewon Ha & Suraj S. Cheema & Jae Kyeong Jeong & Daewoong Kwon, 2024. "Analog reservoir computing via ferroelectric mixed phase boundary transistors," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    17. Han Zhao & Zhengwu Liu & Jianshi Tang & Bin Gao & Qi Qin & Jiaming Li & Ying Zhou & Peng Yao & Yue Xi & Yudeng Lin & He Qian & Huaqiang Wu, 2023. "Energy-efficient high-fidelity image reconstruction with memristor arrays for medical diagnosis," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    18. Mitsumasa Nakajima & Katsuma Inoue & Kenji Tanaka & Yasuo Kuniyoshi & Toshikazu Hashimoto & Kohei Nakajima, 2022. "Physical deep learning with biologically inspired training method: gradient-free approach for physical hardware," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    19. Yang, Jinrong & Chen, Guici & Wen, Shiping & Wang, Leimin, 2023. "Finite-time dissipative control for discrete-time memristive neural networks via interval matrix method," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    20. Changsong Gao & Di Liu & Chenhui Xu & Weidong Xie & Xianghong Zhang & Junhua Bai & Zhixian Lin & Cheng Zhang & Yuanyuan Hu & Tailiang Guo & Huipeng Chen, 2024. "Toward grouped-reservoir computing: organic neuromorphic vertical transistor with distributed reservoir states for efficient recognition and prediction," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58359-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.