IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58337-w.html
   My bibliography  Save this article

Covalent organic framework without cocatalyst loading for efficient photocatalytic sacrificial hydrogen production from water

Author

Listed:
  • Xuejiao Du

    (Hebei University of Technology)

  • Haifeng Ji

    (Hebei University of Technology)

  • Yang Xu

    (Hebei University of Technology)

  • Shiwen Du

    (Chinese Academy of Sciences)

  • Zhaochi Feng

    (Chinese Academy of Sciences)

  • Beibei Dong

    (Hebei University of Technology)

  • Ruihu Wang

    (Hebei University of Technology)

  • Fuxiang Zhang

    (Chinese Academy of Sciences)

Abstract

Metals are typically essential as either integral components within photocatalysts or as cocatalyst modifiers to enable efficient artificial photosynthesis, such as water splitting and carbon dioxide reduction. However, developing photocatalysts that function effectively without metal cocatalysts remains challenging due to their cost and scarcity. Here we show a nonstoichiometric β-ketoenamine-linked covalent organic framework that operates without cocatalysts, achieving hydrogen production rates of 15.48 mmol·g⁻¹·h⁻¹ from seawater and 22.45 mmol·g⁻¹·h⁻¹ from water with an ascorbic acid scavenger under visible light. It outperforms many reported platinum-modified covalent organic frameworks and metal-containing inorganic photocatalysts. The enhanced performance is attributed to its broad light absorption edge extending to approximately 660 nm, efficient charge separation, and the presence of abundant active oxygen sites derived from carbonyl groups, which exhibit a low hydrogen-binding Gibbs free energy change. This work lays the groundwork for designing cost-effective photocatalytic systems suitable for large-scale hydrogen production.

Suggested Citation

  • Xuejiao Du & Haifeng Ji & Yang Xu & Shiwen Du & Zhaochi Feng & Beibei Dong & Ruihu Wang & Fuxiang Zhang, 2025. "Covalent organic framework without cocatalyst loading for efficient photocatalytic sacrificial hydrogen production from water," Nature Communications, Nature, vol. 16(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58337-w
    DOI: 10.1038/s41467-025-58337-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58337-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58337-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yan Yang & Xiaoyu Chu & Hong-Yu Zhang & Rui Zhang & Yu-Han Liu & Feng-Ming Zhang & Meng Lu & Zhao-Di Yang & Ya-Qian Lan, 2023. "Engineering β-ketoamine covalent organic frameworks for photocatalytic overall water splitting," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Yimeng Li & Li Yang & Huijie He & Lei Sun & Honglei Wang & Xu Fang & Yanliang Zhao & Daoyuan Zheng & Yu Qi & Zhen Li & Weiqiao Deng, 2022. "In situ photodeposition of platinum clusters on a covalent organic framework for photocatalytic hydrogen production," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Ruotian Chen & Zefeng Ren & Yu Liang & Guanhua Zhang & Thomas Dittrich & Runze Liu & Yang Liu & Yue Zhao & Shan Pang & Hongyu An & Chenwei Ni & Panwang Zhou & Keli Han & Fengtao Fan & Can Li, 2022. "Spatiotemporal imaging of charge transfer in photocatalyst particles," Nature, Nature, vol. 610(7931), pages 296-301, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rongchen Shen & Can Huang & Lei Hao & Guijie Liang & Peng Zhang & Qiang Yue & Xin Li, 2025. "Ground-state charge transfer in single-molecule junctions covalent organic frameworks for boosting photocatalytic hydrogen evolution," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    2. Guangri Jia & Fusai Sun & Tao Zhou & Ying Wang & Xiaoqiang Cui & Zhengxiao Guo & Fengtao Fan & Jimmy C. Yu, 2024. "Charge redistribution of a spatially differentiated ferroelectric Bi4Ti3O12 single crystal for photocatalytic overall water splitting," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Shijia Luo & Jinglin Gao & Congcong Yin & Yanqiu Lu & Yong Wang, 2025. "Coupling Cu2O clusters and imine-linked COFs on microfiltration membranes for fast and robust water sterilization," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    4. Qitao Chen & Baodong Mao & Yanhong Liu & Yunjie Zhou & Hui Huang & Song Wang & Longhua Li & Wei-Cheng Yan & Weidong Shi & Zhenhui Kang, 2024. "Designing 2D carbon dot nanoreactors for alcohol oxidation coupled with hydrogen evolution," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Hongguang Zhang & Asfaw Yohannes & Heng Zhao & Zheng Li & Yejun Xiao & Xi Cheng & Hui Wang & Zhangkang Li & Samira Siahrostami & Md Golam Kibria & Jinguang Hu, 2025. "Photocatalytic asymmetric C-C coupling for CO2 reduction on dynamically reconstructed Ruδ+-O/Ru0-O sites," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    6. Camilo A. Mesa & Michael Sachs & Ernest Pastor & Nicolas Gauriot & Alice J. Merryweather & Miguel A. Gomez-Gonzalez & Konstantin Ignatyev & Sixto Giménez & Akshay Rao & James R. Durrant & Raj Pandya, 2024. "Correlating activities and defects in (photo)electrocatalysts using in-situ multi-modal microscopic imaging," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Fuyang Liu & Peng Zhou & Yanghui Hou & Hao Tan & Yin Liang & Jialiang Liang & Qing Zhang & Shaojun Guo & Meiping Tong & Jinren Ni, 2023. "Covalent organic frameworks for direct photosynthesis of hydrogen peroxide from water, air and sunlight," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Liangjun Chen & Guinan Chen & Chengtao Gong & Yifei Zhang & Zhihao Xing & Jiahao Li & Guodong Xu & Gao Li & Yongwu Peng, 2024. "Low-valence platinum single atoms in sulfur-containing covalent organic frameworks for photocatalytic hydrogen evolution," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    9. Jiahe Zhang & Xiaoning Li & Haijun Hu & Hongwei Huang & Hui Li & Xiaodong Sun & Tianyi Ma, 2024. "Enhancing photocatalytic performance of covalent organic frameworks via ionic polarization," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    10. Zheng Lin & Xiangkun Yu & Zijian Zhao & Ning Ding & Changchun Wang & Ke Hu & Youliang Zhu & Jia Guo, 2025. "Controlling crystallization in covalent organic frameworks to facilitate photocatalytic hydrogen production," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    11. Jinxing Yu & Jie Huang & Ronghua Li & Yanbo Li & Gang Liu & Xiaoxiang Xu, 2025. "Fluorine-expedited nitridation of layered perovskite Sr2TiO4 for visible-light-driven photocatalytic overall water splitting," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    12. Peng, Jiaru & Han, Yue & Ma, Dingxuan & Zhao, Ruiyang & Han, Jishu & Wang, Lei, 2023. "Hollow Cd0.9In0.1Se/Cu2MoS4 nanocube S-scheme heterojunction towards high photocatalytic hydrogen production," Renewable Energy, Elsevier, vol. 212(C), pages 984-993.
    13. Jie Huang & Yuyang Kang & Jianan Liu & Tingting Yao & Jianhang Qiu & Peipei Du & Biaohong Huang & Weijin Hu & Yan Liang & Tengfeng Xie & Chunlin Chen & Li-Chang Yin & Lianzhou Wang & Hui-Ming Cheng & , 2023. "Gradient tungsten-doped Bi3TiNbO9 ferroelectric photocatalysts with additional built-in electric field for efficient overall water splitting," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    14. Chengxin Zhou & Jian Gao & Yunlong Deng & Ming Wang & Dan Li & Chuan Xia, 2023. "Electric double layer-mediated polarization field for optimizing photogenerated carrier dynamics and thermodynamics," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    15. Ting He & Wenlong Zhen & Yongzhi Chen & Yuanyuan Guo & Zhuoer Li & Ning Huang & Zhongping Li & Ruoyang Liu & Yuan Liu & Xu Lian & Can Xue & Tze Chien Sum & Wei Chen & Donglin Jiang, 2023. "Integrated interfacial design of covalent organic framework photocatalysts to promote hydrogen evolution from water," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    16. Yan Guo & Bowen Zhu & Chuyang Y. Tang & Qixin Zhou & Yongfa Zhu, 2024. "Photogenerated outer electric field induced electrophoresis of organic nanocrystals for effective solid-solid photocatalysis," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    17. Yanghui Hou & Peng Zhou & Fuyang Liu & Ke Tong & Yanyu Lu & Zhengmao Li & Jialiang Liang & Meiping Tong, 2024. "Rigid covalent organic frameworks with thiazole linkage to boost oxygen activation for photocatalytic water purification," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    18. Peng Gao & Yezi Hu & Zewen Shen & Guixia Zhao & Ruiqing Cai & Feng Chu & Zhuoyu Ji & Xiangke Wang & Xiubing Huang, 2024. "Ultra-highly efficient enrichment of uranium from seawater via studtite nanodots growth-elution cycle," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    19. Ziqi Zhang & Zhe Zhang & Cailing Chen & Rui Wang & Minggang Xie & Sheng Wan & Ruige Zhang & Linchuan Cong & Haiyan Lu & Yu Han & Wei Xing & Zhan Shi & Shouhua Feng, 2024. "Single-atom platinum with asymmetric coordination environment on fully conjugated covalent organic framework for efficient electrocatalysis," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58337-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.