IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-59467-x.html
   My bibliography  Save this article

Floatable organic-inorganic hybrid-TiO2 unlocks superoxide radicals for plastic photoreforming in neutral solution

Author

Listed:
  • Mengpei Jiang

    (Chinese Academy of Sciences
    University of Science and Technology of China)

  • Jianjun Li

    (Chinese Academy of Sciences
    University of Science and Technology of China)

  • Xinyi Wan

    (Chinese Academy of Sciences
    University of Science and Technology of China)

  • Jianhang Qiu

    (Chinese Academy of Sciences
    University of Science and Technology of China)

  • Tingting Yao

    (Chinese Academy of Sciences
    University of Science and Technology of China)

  • Wenyu Zhang

    (Chinese Academy of Sciences
    University of Science and Technology of China)

  • Shangyi Ma

    (Chinese Academy of Sciences
    University of Science and Technology of China)

  • Hao Tan

    (Chinese Academy of Sciences
    University of Science and Technology of China)

  • Ali Han

    (Chinese Academy of Sciences
    University of Science and Technology of China)

  • Chunlin Chen

    (Chinese Academy of Sciences
    University of Science and Technology of China)

  • Gang Liu

    (Chinese Academy of Sciences
    University of Science and Technology of China)

Abstract

Plastic photoreforming offers a compelling technology to address the global issue of the large amount cumulative plastic waste by converting it into valuable fuels and chemical feedstocks. However, constrained by insufficient mass and energy transfers, the existing hydrophilic plastic photoreforming systems heavily rely on the unsustainable chemical pre-treatments in corrosive solutions. Herein, we demonstrate a conceptual plastic photoreforming system based on a floatable hydrophobic organic-inorganic hybrid-TiO2 photocatalyst, which unlocks superoxide radical as the major oxidizing species and forms a four-phase interface among photocatalyst, plastic substrate, water and air, thus greatly enhancing the mass and energy transfers. Consequently, the photoreforming yield rates in neutral aqueous solutions are increased by 1–2 orders of magnitude for typical plastic including polyethylene, polypropylene, and polyvinyl chloride without applying pre-treatments, whilst producing high-value C2H5OH with a selectivity of over 40%. We believe this work reveals a feasible route to sustainable plastic photoreforming.

Suggested Citation

  • Mengpei Jiang & Jianjun Li & Xinyi Wan & Jianhang Qiu & Tingting Yao & Wenyu Zhang & Shangyi Ma & Hao Tan & Ali Han & Chunlin Chen & Gang Liu, 2025. "Floatable organic-inorganic hybrid-TiO2 unlocks superoxide radicals for plastic photoreforming in neutral solution," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59467-x
    DOI: 10.1038/s41467-025-59467-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-59467-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-59467-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michael Sachs & Reiner Sebastian Sprick & Drew Pearce & Sam A. J. Hillman & Adriano Monti & Anne A. Y. Guilbert & Nick J. Brownbill & Stoichko Dimitrov & Xingyuan Shi & Frédéric Blanc & Martijn A. Zwi, 2018. "Understanding structure-activity relationships in linear polymer photocatalysts for hydrogen evolution," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    2. Hongyuan Lu & Daniel J. Diaz & Natalie J. Czarnecki & Congzhi Zhu & Wantae Kim & Raghav Shroff & Daniel J. Acosta & Bradley R. Alexander & Hannah O. Cole & Yan Zhang & Nathaniel A. Lynd & Andrew D. El, 2022. "Machine learning-aided engineering of hydrolases for PET depolymerization," Nature, Nature, vol. 604(7907), pages 662-667, April.
    3. Ruotian Chen & Zefeng Ren & Yu Liang & Guanhua Zhang & Thomas Dittrich & Runze Liu & Yang Liu & Yue Zhao & Shan Pang & Hongyu An & Chenwei Ni & Panwang Zhou & Keli Han & Fengtao Fan & Can Li, 2022. "Spatiotemporal imaging of charge transfer in photocatalyst particles," Nature, Nature, vol. 610(7931), pages 296-301, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qitao Chen & Baodong Mao & Yanhong Liu & Yunjie Zhou & Hui Huang & Song Wang & Longhua Li & Wei-Cheng Yan & Weidong Shi & Zhenhui Kang, 2024. "Designing 2D carbon dot nanoreactors for alcohol oxidation coupled with hydrogen evolution," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Hongguang Zhang & Asfaw Yohannes & Heng Zhao & Zheng Li & Yejun Xiao & Xi Cheng & Hui Wang & Zhangkang Li & Samira Siahrostami & Md Golam Kibria & Jinguang Hu, 2025. "Photocatalytic asymmetric C-C coupling for CO2 reduction on dynamically reconstructed Ruδ+-O/Ru0-O sites," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    3. Xinlei Wei & Xue Yang & Congcong Hu & Qiangzi Li & Qianqian Liu & Yue Wu & Leipeng Xie & Xiao Ning & Fei Li & Tao Cai & Zhiguang Zhu & Yi-Heng P. Job Zhang & Yanfei Zhang & Xuejun Chen & Chun You, 2024. "ATP-free in vitro biotransformation of starch-derived maltodextrin into poly-3-hydroxybutyrate via acetyl-CoA," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Ren Wei & Peter Westh & Gert Weber & Lars M. Blank & Uwe T. Bornscheuer, 2025. "Standardization guidelines and future trends for PET hydrolase research," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    5. Javier M. Hernández-Sancho & Arnaud Boudigou & Maria V. G. Alván-Vargas & Dekel Freund & Jenny Arnling Bååth & Peter Westh & Kenneth Jensen & Lianet Noda-García & Daniel C. Volke & Pablo I. Nikel, 2024. "A versatile microbial platform as a tunable whole-cell chemical sensor," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    6. Nan Zheng & Yongchao Cai & Zehua Zhang & Huimin Zhou & Yu Deng & Shuang Du & Mai Tu & Wei Fang & Xiaole Xia, 2025. "Tailoring industrial enzymes for thermostability and activity evolution by the machine learning-based iCASE strategy," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    7. Camilo A. Mesa & Michael Sachs & Ernest Pastor & Nicolas Gauriot & Alice J. Merryweather & Miguel A. Gomez-Gonzalez & Konstantin Ignatyev & Sixto Giménez & Akshay Rao & James R. Durrant & Raj Pandya, 2024. "Correlating activities and defects in (photo)electrocatalysts using in-situ multi-modal microscopic imaging," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    8. Teng Bao & Yuanchao Qian & Yongping Xin & James J. Collins & Ting Lu, 2023. "Engineering microbial division of labor for plastic upcycling," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    9. Noelia Ferruz & Steffen Schmidt & Birte Höcker, 2022. "ProtGPT2 is a deep unsupervised language model for protein design," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    10. Hwaseok Hong & Dongwoo Ki & Hogyun Seo & Jiyoung Park & Jaewon Jang & Kyung-Jin Kim, 2023. "Discovery and rational engineering of PET hydrolase with both mesophilic and thermophilic PET hydrolase properties," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    11. Amelia R. Bergeson & Ashli J. Silvera & Hal S. Alper, 2024. "Bottlenecks in biobased approaches to plastic degradation," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    12. Zhuozhi Chen & Rongdi Duan & Yunjie Xiao & Yi Wei & Hanxiao Zhang & Xinzhao Sun & Shen Wang & Yingying Cheng & Xue Wang & Shanwei Tong & Yunxiao Yao & Cheng Zhu & Haitao Yang & Yanyan Wang & Zefang Wa, 2022. "Biodegradation of highly crystallized poly(ethylene terephthalate) through cell surface codisplay of bacterial PETase and hydrophobin," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    13. Mark J. G. Bakkers & Tina Ritschel & Machteld Tiemessen & Jacobus Dijkman & Angelo A. Zuffianò & Xiaodi Yu & Daan Overveld & Lam Le & Richard Voorzaat & Marlies M. Haaren & Martijn Man & Sem Tamara & , 2024. "Efficacious human metapneumovirus vaccine based on AI-guided engineering of a closed prefusion trimer," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    14. Xiaokang Ren & Luyang Zhao & Jintao Shen & Peng Zhou & Kaili Zhao & Chengqian Yuan & Ruirui Xing & Xuehai Yan, 2025. "Engineered microbial platform confers resistance against heavy metals via phosphomelanin biosynthesis," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    15. Katarzyna Świderek & Susana Velasco-Lozano & Miquel À. Galmés & Ion Olazabal & Haritz Sardon & Fernando López-Gallego & Vicent Moliner, 2023. "Mechanistic studies of a lipase unveil effect of pH on hydrolysis products of small PET modules," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    16. Anni Li & Yijie Sheng & Haiyang Cui & Minghui Wang & Luxuan Wu & Yibo Song & Rongrong Yang & Xiujuan Li & He Huang, 2023. "Discovery and mechanism-guided engineering of BHET hydrolases for improved PET recycling and upcycling," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    17. Jinxing Yu & Jie Huang & Ronghua Li & Yanbo Li & Gang Liu & Xiaoxiang Xu, 2025. "Fluorine-expedited nitridation of layered perovskite Sr2TiO4 for visible-light-driven photocatalytic overall water splitting," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    18. Xuejiao Du & Haifeng Ji & Yang Xu & Shiwen Du & Zhaochi Feng & Beibei Dong & Ruihu Wang & Fuxiang Zhang, 2025. "Covalent organic framework without cocatalyst loading for efficient photocatalytic sacrificial hydrogen production from water," Nature Communications, Nature, vol. 16(1), pages 1-7, December.
    19. Katia Pagano & Jin Gwan Kim & Joel Luke & Ellasia Tan & Katherine Stewart & Igor V. Sazanovich & Gabriel Karras & Hristo Ivov Gonev & Adam V. Marsh & Na Yeong Kim & Sooncheol Kwon & Young Yong Kim & M, 2024. "Slow vibrational relaxation drives ultrafast formation of photoexcited polaron pair states in glycolated conjugated polymers," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    20. Jie Huang & Yuyang Kang & Jianan Liu & Tingting Yao & Jianhang Qiu & Peipei Du & Biaohong Huang & Weijin Hu & Yan Liang & Tengfeng Xie & Chunlin Chen & Li-Chang Yin & Lianzhou Wang & Hui-Ming Cheng & , 2023. "Gradient tungsten-doped Bi3TiNbO9 ferroelectric photocatalysts with additional built-in electric field for efficient overall water splitting," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-59467-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.