IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-57776-9.html
   My bibliography  Save this article

Real-time label-free imaging of living crystallization-driven self-assembly

Author

Listed:
  • Yujie Guo

    (King’s College London)

  • Tianlai Xia

    (University of Birmingham)

  • Vivien Walter

    (King’s College London)

  • Yujie Xie

    (University of Birmingham)

  • Julia Y. Rho

    (University of Birmingham)

  • Laihui Xiao

    (University of Birmingham)

  • Rachel K. O’Reilly

    (University of Birmingham)

  • Mark I. Wallace

    (King’s College London)

Abstract

Living crystallization-driven self-assembly (CDSA) of semicrystalline block copolymers is a powerful method for the bottom-up construction of uniform polymer microstructures with complex hierarchies. Improving our ability to engineer such complex particles demands a better understanding of how to precisely control the self-assembly process. Here, we apply interferometric scattering (iSCAT) microscopy to observe the real-time growth of individual poly(ε-caprolactone)-based fibers and platelets. This label-free method enables us to map the role of key reaction parameters on platelet growth rate, size, and morphology. Furthermore, iSCAT provides a contrast mechanism for studying multi-annulus platelets formed via the sequential addition of different unimers, offering insights into the spatial distribution of polymer compositions within a single platelet.

Suggested Citation

  • Yujie Guo & Tianlai Xia & Vivien Walter & Yujie Xie & Julia Y. Rho & Laihui Xiao & Rachel K. O’Reilly & Mark I. Wallace, 2025. "Real-time label-free imaging of living crystallization-driven self-assembly," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57776-9
    DOI: 10.1038/s41467-025-57776-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-57776-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-57776-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Anqi Ji & Jung-Hwan Song & Qitong Li & Fenghao Xu & Ching-Ting Tsai & Richard C. Tiberio & Bianxiao Cui & Philippe Lalanne & Pieter G. Kik & David A. B. Miller & Mark L. Brongersma, 2022. "Quantitative phase contrast imaging with a nonlocal angle-selective metasurface," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    2. Madhavi Krishnan & Nassiredin Mojarad & Philipp Kukura & Vahid Sandoghdar, 2010. "Geometry-induced electrostatic trapping of nanometric objects in a fluid," Nature, Nature, vol. 467(7316), pages 692-695, October.
    3. Xingli Wang & Katharina Klingan & Malte Klingenhof & Tim Möller & Jorge Ferreira de Araújo & Isaac Martens & Alexander Bagger & Shan Jiang & Jan Rossmeisl & Holger Dau & Peter Strasser, 2021. "Morphology and mechanism of highly selective Cu(II) oxide nanosheet catalysts for carbon dioxide electroreduction," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    4. Hongjing Dou & Mei Li & Yan Qiao & Robert Harniman & Xiaoyu Li & Charlotte E. Boott & Stephen Mann & Ian Manners, 2017. "Higher-order assembly of crystalline cylindrical micelles into membrane-extendable colloidosomes," Nature Communications, Nature, vol. 8(1), pages 1-8, December.
    5. Sanghee Yang & Sung-Yun Kang & Tae-Lim Choi, 2021. "Semi-conducting 2D rectangles with tunable length via uniaxial living crystallization-driven self-assembly of homopolymer," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luis Morales-Inostroza & Julian Folz & Ralf Kühnemuth & Suren Felekyan & Franz-Ferdinand Wieser & Claus A. M. Seidel & Stephan Götzinger & Vahid Sandoghdar, 2024. "An optofluidic antenna for enhancing the sensitivity of single-emitter measurements," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Zishan Han & Daliang Han & Zhe Chen & Jiachen Gao & Guangyi Jiang & Xinyu Wang & Shuaishuai Lyu & Yong Guo & Chuannan Geng & Lichang Yin & Zhe Weng & Quan-Hong Yang, 2022. "Steering surface reconstruction of copper with electrolyte additives for CO2 electroreduction," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Yinchao Yao & Tong Shi & Wenxing Chen & Jiehua Wu & Yunying Fan & Yichun Liu & Liang Cao & Zhuo Chen, 2024. "A surface strategy boosting the ethylene selectivity for CO2 reduction and in situ mechanistic insights," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Kaili Yao & Jun Li & Adnan Ozden & Haibin Wang & Ning Sun & Pengyu Liu & Wen Zhong & Wei Zhou & Jieshu Zhou & Xi Wang & Hanqi Liu & Yongchang Liu & Songhua Chen & Yongfeng Hu & Ziyun Wang & David Sint, 2024. "In situ copper faceting enables efficient CO2/CO electrolysis," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Michele Cotrufo & Shaban B. Sulejman & Lukas Wesemann & Md. Ataur Rahman & Madhu Bhaskaran & Ann Roberts & Andrea Alù, 2024. "Reconfigurable image processing metasurfaces with phase-change materials," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Kaihang Yue & Yanyang Qin & Honghao Huang & Zhuoran Lv & Mingzhi Cai & Yaqiong Su & Fuqiang Huang & Ya Yan, 2024. "Stabilized Cu0 -Cu1+ dual sites in a cyanamide framework for selective CO2 electroreduction to ethylene," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Jing Xue & Xue Dong & Chunxiao Liu & Jiawei Li & Yizhou Dai & Weiqing Xue & Laihao Luo & Yuan Ji & Xiao Zhang & Xu Li & Qiu Jiang & Tingting Zheng & Jianping Xiao & Chuan Xia, 2024. "Turning copper into an efficient and stable CO evolution catalyst beyond noble metals," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Yue, Pengtao & Kang, Zhongyin & Fu, Qian & Li, Jun & Zhang, Liang & Zhu, Xun & Liao, Qiang, 2021. "Life cycle and economic analysis of chemicals production via electrolytic (bi)carbonate and gaseous CO2 conversion," Applied Energy, Elsevier, vol. 304(C).
    9. Xiaodong Qiu & Jingcheng Zhang & Yubin Fan & Junxiao Zhou & Lixiang Chen & Din Ping Tsai, 2025. "Metasurface enabled high-order differentiator," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    10. Shikai Liu & Yuheng Li & Di Wang & Shibo Xi & Haoming Xu & Yulin Wang & Xinzhe Li & Wenjie Zang & Weidong Liu & Mengyao Su & Katherine Yan & Adam C. Nielander & Andrew B. Wong & Jiong Lu & Thomas F. J, 2024. "Alkali cation-induced cathodic corrosion in Cu electrocatalysts," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    11. Ahmed M. Abdellah & Fatma Ismail & Oliver W. Siig & Jie Yang & Carmen M. Andrei & Liza-Anastasia DiCecco & Amirhossein Rakhsha & Kholoud E. Salem & Kathryn Grandfield & Nabil Bassim & Robert Black & G, 2024. "Impact of palladium/palladium hydride conversion on electrochemical CO2 reduction via in-situ transmission electron microscopy and diffraction," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    12. Jiawei Li & Hongliang Zeng & Xue Dong & Yimin Ding & Sunpei Hu & Runhao Zhang & Yizhou Dai & Peixin Cui & Zhou Xiao & Donghao Zhao & Liujiang Zhou & Tingting Zheng & Jianping Xiao & Jie Zeng & Chuan X, 2023. "Selective CO2 electrolysis to CO using isolated antimony alloyed copper," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    13. Yajun Zheng & Hedan Yao & Ruinan Di & Zhicheng Xiang & Qiang Wang & Fangfang Lu & Yu Li & Guangxing Yang & Qiang Ma & Zhiping Zhang, 2022. "Water coordinated on Cu(I)-based catalysts is the oxygen source in CO2 reduction to CO," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    14. J. Ruiter & V. R. M. Benning & S. Yang & B. J. Hartigh & H. Wang & P. T. Prins & J. M. Dorresteijn & J. C. L. Janssens & G. Manna & A. V. Petukhov & B. M. Weckhuysen & F. T. Rabouw & W. Stam, 2025. "Multiscale X-ray scattering elucidates activation and deactivation of oxide-derived copper electrocatalysts for CO2 reduction," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    15. Justas Svirelis & Zeynep Adali & Gustav Emilsson & Jesper Medin & John Andersson & Radhika Vattikunta & Mats Hulander & Julia Järlebark & Krzysztof Kolman & Oliver Olsson & Yusuke Sakiyama & Roderick , 2023. "Stable trapping of multiple proteins at physiological conditions using nanoscale chambers with macromolecular gates," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    16. Chenglong Liao & Yanjun Gong & Yanxue Che & Hongwei Ji & Bing Liu & Ling Zang & Yanke Che & Jincai Zhao, 2024. "Concentric hollow multi-hexagonal platelets from a small molecule," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    17. Philipp Hauke & Thomas Merzdorf & Malte Klingenhof & Peter Strasser, 2023. "Hydrogenation versus hydrogenolysis during alkaline electrochemical valorization of 5-hydroxymethylfurfural over oxide-derived Cu-bimetallics," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    18. Baiyu Yang & Ling Chen & Songlin Xue & Hao Sun & Kun Feng & Yufeng Chen & Xiang Zhang & Long Xiao & Yongze Qin & Jun Zhong & Zhao Deng & Yan Jiao & Yang Peng, 2022. "Electrocatalytic CO2 reduction to alcohols by modulating the molecular geometry and Cu coordination in bicentric copper complexes," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    19. Shifu Wang & Fuhua Li & Jian Zhao & Yaqiong Zeng & Yifan Li & Zih-Yi Lin & Tsung-Ju Lee & Shuhui Liu & Xinyi Ren & Weijue Wang & Yusen Chen & Sung-Fu Hung & Ying-Rui Lu & Yi Cui & Xiaofeng Yang & Xuni, 2024. "Manipulating C-C coupling pathway in electrochemical CO2 reduction for selective ethylene and ethanol production over single-atom alloy catalyst," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57776-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.