IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-57386-5.html
   My bibliography  Save this article

A framework for integrating genomics, microbial traits, and ecosystem biogeochemistry

Author

Listed:
  • Zhen Li

    (Lawrence Berkeley National Laboratory
    University of Arizona
    Lawrence Livermore National Laboratory)

  • William J. Riley

    (Lawrence Berkeley National Laboratory)

  • Gianna L. Marschmann

    (Lawrence Berkeley National Laboratory)

  • Ulas Karaoz

    (Lawrence Berkeley National Laboratory)

  • Ian A. Shirley

    (Lawrence Berkeley National Laboratory)

  • Qiong Wu

    (Lawrence Berkeley National Laboratory
    University of California)

  • Nicholas J. Bouskill

    (Lawrence Berkeley National Laboratory)

  • Kuang-Yu Chang

    (Lawrence Berkeley National Laboratory)

  • Patrick M. Crill

    (Stockholm University)

  • Robert F. Grant

    (University of Alberta)

  • Eric King

    (Consumnes River College
    Arva Intelligence Corp)

  • Scott R. Saleska

    (University of Arizona)

  • Matthew B. Sullivan

    (The Ohio State University
    The Ohio State University
    The Ohio State University)

  • Jinyun Tang

    (Lawrence Berkeley National Laboratory)

  • Ruth K. Varner

    (University of New Hampshire)

  • Ben J. Woodcroft

    (Translational Research Institute)

  • Kelly C. Wrighton

    (Colorado State University)

  • Eoin L. Brodie

    (Lawrence Berkeley National Laboratory
    University of California)

Abstract

Microbes drive the biogeochemical cycles of earth systems, yet the long-standing goal of linking emerging genomic information, microbial traits, mechanistic ecosystem models, and projections under climate change has remained elusive despite a wealth of emerging genomic information. Here we developed a general genome-to-ecosystem (G2E) framework for integrating genome-inferred microbial kinetic traits into mechanistic models of terrestrial ecosystems and applied it at a well-studied Arctic wetland by benchmarking predictions against observed greenhouse gas emissions. We found variation in genome-inferred microbial kinetic traits resulted in large differences in simulated annual methane emissions, quantitatively demonstrating that the genomically observable variations in microbial capacity are consequential for ecosystem functioning. Applying microbial community-aggregated traits via genome relative-abundance-weighting gave better methane emissions predictions (i.e., up to 54% decrease in bias) compared to ignoring the observed abundances, highlighting the value of combined trait inferences and abundances. This work provides an example of integrating microbial functional trait-based genomics, mechanistic and pragmatic trait parameterizations of diverse microbial metabolisms, and mechanistic ecosystem modeling. The generalizable G2E framework will enable the use of abundant microbial metagenomics data to improve predictions of microbial interactions in many complex systems, including oceanic microbiomes.

Suggested Citation

  • Zhen Li & William J. Riley & Gianna L. Marschmann & Ulas Karaoz & Ian A. Shirley & Qiong Wu & Nicholas J. Bouskill & Kuang-Yu Chang & Patrick M. Crill & Robert F. Grant & Eric King & Scott R. Saleska , 2025. "A framework for integrating genomics, microbial traits, and ecosystem biogeochemistry," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57386-5
    DOI: 10.1038/s41467-025-57386-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-57386-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-57386-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Carmody K. McCalley & Ben J. Woodcroft & Suzanne B. Hodgkins & Richard A. Wehr & Eun-Hae Kim & Rhiannon Mondav & Patrick M. Crill & Jeffrey P. Chanton & Virginia I. Rich & Gene W. Tyson & Scott R. Sal, 2014. "Methane dynamics regulated by microbial community response to permafrost thaw," Nature, Nature, vol. 514(7523), pages 478-481, October.
    2. Massimo Bourquin & Susheel Bhanu Busi & Stilianos Fodelianakis & Hannes Peter & Alex Washburne & Tyler J. Kohler & Leïla Ezzat & Grégoire Michoud & Paul Wilmes & Tom J. Battin, 2022. "The microbiome of cryospheric ecosystems," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Ben J. Woodcroft & Caitlin M. Singleton & Joel A. Boyd & Paul N. Evans & Joanne B. Emerson & Ahmed A. F. Zayed & Robert D. Hoelzle & Timothy O. Lamberton & Carmody K. McCalley & Suzanne B. Hodgkins & , 2018. "Genome-centric view of carbon processing in thawing permafrost," Nature, Nature, vol. 560(7716), pages 49-54, August.
    4. Nicholas J. Bouskill & William J. Riley & Qing Zhu & Zelalem A. Mekonnen & Robert F. Grant, 2020. "Alaskan carbon-climate feedbacks will be weaker than inferred from short-term experiments," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    5. Karthik Anantharaman & Christopher T. Brown & Laura A. Hug & Itai Sharon & Cindy J. Castelle & Alexander J. Probst & Brian C. Thomas & Andrea Singh & Michael J. Wilkins & Ulas Karaoz & Eoin L. Brodie , 2016. "Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system," Nature Communications, Nature, vol. 7(1), pages 1-11, December.
    6. Mohammad Bahram & Falk Hildebrand & Sofia K. Forslund & Jennifer L. Anderson & Nadejda A. Soudzilovskaia & Peter M. Bodegom & Johan Bengtsson-Palme & Sten Anslan & Luis Pedro Coelho & Helery Harend & , 2018. "Structure and function of the global topsoil microbiome," Nature, Nature, vol. 560(7717), pages 233-237, August.
    7. Zakharova, L. & Meyer, K.M. & Seifan, M., 2019. "Trait-based modelling in ecology: A review of two decades of research," Ecological Modelling, Elsevier, vol. 407(C), pages 1-1.
    8. Lucas Paoli & Hans-Joachim Ruscheweyh & Clarissa C. Forneris & Florian Hubrich & Satria Kautsar & Agneya Bhushan & Alessandro Lotti & Quentin Clayssen & Guillem Salazar & Alessio Milanese & Charlotte , 2022. "Biosynthetic potential of the global ocean microbiome," Nature, Nature, vol. 607(7917), pages 111-118, July.
    9. William R. Wieder & Gordon B. Bonan & Steven D. Allison, 2013. "Global soil carbon projections are improved by modelling microbial processes," Nature Climate Change, Nature, vol. 3(10), pages 909-912, October.
    10. Jenni Hultman & Mark P. Waldrop & Rachel Mackelprang & Maude M. David & Jack McFarland & Steven J. Blazewicz & Jennifer Harden & Merritt R. Turetsky & A. David McGuire & Manesh B. Shah & Nathan C. Ver, 2015. "Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes," Nature, Nature, vol. 521(7551), pages 208-212, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juan Pedro Rodríguez-López & Chihua Wu & Tatiana A. Vishnivetskaya & Julian B. Murton & Wenqiang Tang & Chao Ma, 2022. "Permafrost in the Cretaceous supergreenhouse," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Emily K. Bechtold & Jared B. Ellenbogen & Jorge A. Villa & Djennyfer K. Melo Ferreira & Angela M. Oliverio & Joel E. Kostka & Virginia I. Rich & Ruth K. Varner & Sheel Bansal & Eric J. Ward & Gil Bohr, 2025. "Metabolic interactions underpinning high methane fluxes across terrestrial freshwater wetlands," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    3. Xianzhe Gong & Álvaro Rodríguez Río & Le Xu & Zhiyi Chen & Marguerite V. Langwig & Lei Su & Mingxue Sun & Jaime Huerta-Cepas & Valerie Anda & Brett J. Baker, 2022. "New globally distributed bacterial phyla within the FCB superphylum," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Ernestina Hauptfeld & Nikolaos Pappas & Sandra Iwaarden & Basten L. Snoek & Andrea Aldas-Vargas & Bas E. Dutilh & F. A. Bastiaan Meijenfeldt, 2024. "Integrating taxonomic signals from MAGs and contigs improves read annotation and taxonomic profiling of metagenomes," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Luyao Kang & Yutong Song & Rachel Mackelprang & Dianye Zhang & Shuqi Qin & Leiyi Chen & Linwei Wu & Yunfeng Peng & Yuanhe Yang, 2024. "Metagenomic insights into microbial community structure and metabolism in alpine permafrost on the Tibetan Plateau," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    6. Lychuk, Taras E. & Hill, Robert L. & Izaurralde, Roberto C. & Momen, Bahram & Thomson, Allison M., 2021. "Evaluation of climate change impacts and effectiveness of adaptation options on nitrate loss, microbial respiration, and soil organic carbon in the Southeastern USA," Agricultural Systems, Elsevier, vol. 193(C).
    7. repec:plo:pone00:0089252 is not listed on IDEAS
    8. Bong Gu Kang & Kyung-Min Seo & Tag Gon Kim, 2018. "Communication Analysis of Network-Centric Warfare via Transformation of System of Systems Model into Integrated System Model Using Neural Network," Complexity, Hindawi, vol. 2018, pages 1-16, June.
    9. Qianqian Su & Jie Li & Jingui Wang & Gang Li & Yang Sun & Xiaoqin Liu & Lan Luo & Xinrui Wang & Guilong Zhang, 2025. "Available Nitrogen as the Determinant of Variability in Soil Microbial Communities Throughout Lycium chinense Growth Zones in the Qaidam Basin, Qinghai, China," Agriculture, MDPI, vol. 15(5), pages 1-22, February.
    10. Jean-Baptiste Ramond & Annelize Pienaar & Alacia Armstrong & Mary Seely & Don A Cowan, 2014. "Niche-Partitioning of Edaphic Microbial Communities in the Namib Desert Gravel Plain Fairy Circles," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-9, October.
    11. Samiran Banerjee & Cheng Zhao & Gina Garland & Anna Edlinger & Pablo García-Palacios & Sana Romdhane & Florine Degrune & David S. Pescador & Chantal Herzog & Lennel A. Camuy-Velez & Jordi Bascompte & , 2024. "Biotic homogenization, lower soil fungal diversity and fewer rare taxa in arable soils across Europe," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    12. Yunxi Liu & R. A. Leo Elworth & Michael D. Jochum & Kjersti M. Aagaard & Todd J. Treangen, 2022. "De novo identification of microbial contaminants in low microbial biomass microbiomes with Squeegee," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    13. Hu Liao & Hu Li & Chen-Song Duan & Xin-Yuan Zhou & Qiu-Ping Luo & Xin-Li An & Yong-Guan Zhu & Jian-Qiang Su, 2022. "Response of soil viral communities to land use changes," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    14. Wen Zhao & Yali Yin & Shixiong Li & Jingjing Liu & Yiling Dong & Shifeng Su, 2022. "Soil Microbial Community Varied with Vegetation Types on a Small Regional Scale of the Qilian Mountains," Sustainability, MDPI, vol. 14(13), pages 1-15, June.
    15. Kelly J. Whaley-Martin & Lin-Xing Chen & Tara Colenbrander Nelson & Jennifer Gordon & Rose Kantor & Lauren E. Twible & Stephanie Marshall & Sam McGarry & Laura Rossi & Benoit Bessette & Christian Baro, 2023. "O2 partitioning of sulfur oxidizing bacteria drives acidity and thiosulfate distributions in mining waters," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    16. Margaret S. Torn & Rose Z. Abramoff & Lydia J. S. Vaughn & Oriana E. Chafe & J. Bryan Curtis & Biao Zhu, 2025. "Large emissions of CO2 and CH4 due to active-layer warming in Arctic tundra," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    17. Jinyang Liu & Yun Lin & Jinbin Chen & Chenchen Xue & Ranran Wu & Qiang Yan & Xin Chen & Xingxing Yuan, 2022. "Identification and Clarification of VrCYCA1 : A Key Genic Male Sterility-Related Gene in Mungbean by Multi-Omics Analysis," Agriculture, MDPI, vol. 12(5), pages 1-17, May.
    18. Ernest D. Osburn & Steven G. McBride & Mohammad Bahram & Michael S. Strickland, 2024. "Global patterns in the growth potential of soil bacterial communities," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    19. Pacini, Gaio Cesare & Bruschi, Piero & Ferretti, Lorenzo & Santoni, Margherita & Serafini, Francesco & Gaifami, Tommaso, 2023. "FunBies, a model for integrated assessment of functional biodiversity of weed communities in agro-ecosystem," Ecological Modelling, Elsevier, vol. 486(C).
    20. Morten Kam Dahl Dueholm & Marta Nierychlo & Kasper Skytte Andersen & Vibeke Rudkjøbing & Simon Knutsson & Mads Albertsen & Per Halkjær Nielsen, 2022. "MiDAS 4: A global catalogue of full-length 16S rRNA gene sequences and taxonomy for studies of bacterial communities in wastewater treatment plants," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    21. Simon A. Schroeter & Alice May Orme & Katharina Lehmann & Robert Lehmann & Narendrakumar M. Chaudhari & Kirsten Küsel & He Wang & Anke Hildebrandt & Kai Uwe Totsche & Susan Trumbore & Gerd Gleixner, 2025. "Hydroclimatic extremes threaten groundwater quality and stability," Nature Communications, Nature, vol. 16(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57386-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.