IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-56830-w.html
   My bibliography  Save this article

Observation of first- and second-order dissipative phase transitions in a two-photon driven Kerr resonator

Author

Listed:
  • Guillaume Beaulieu

    (École Polytéchnique Fédérale de Lausanne (EPFL)
    École Polytéchnique Fédérale de Lausanne (EPFL))

  • Fabrizio Minganti

    (École Polytéchnique Fédérale de Lausanne (EPFL)
    École Polytéchnique Fédérale de Lausanne (EPFL)
    Alice & Bob)

  • Simone Frasca

    (École Polytéchnique Fédérale de Lausanne (EPFL)
    École Polytéchnique Fédérale de Lausanne (EPFL))

  • Vincenzo Savona

    (École Polytéchnique Fédérale de Lausanne (EPFL)
    École Polytéchnique Fédérale de Lausanne (EPFL))

  • Simone Felicetti

    (National Research Council (ISC-CNR)
    Sapienza University)

  • Roberto Candia

    (Aalto University
    Università degli Studi di Pavia)

  • Pasquale Scarlino

    (École Polytéchnique Fédérale de Lausanne (EPFL)
    École Polytéchnique Fédérale de Lausanne (EPFL))

Abstract

In open quantum systems, dissipative phase transitions (DPTs) emerge from the interplay between unitary evolution, drive, and dissipation. While second-order DPTs have been predominantly investigated theoretically, first-order DPTs have been observed in single-photon-driven Kerr resonators. We present here an experimental and theoretical analysis of both first and second-order DPTs in a two-photon-driven superconducting Kerr resonator. We characterize the steady state at the critical points, showing squeezing below vacuum and the coexistence of phases with different photon numbers. Through time resolved measurements, we study the dynamics across the critical points and observe hysteresis cycles at the first-order DPT and spontaneous symmetry breaking at the second-order DPT. Extracting the timescales of the critical phenomena reveals slowing down across five orders of magnitude when scaling towards the thermodynamic limit. Our results showcase the engineering of criticality in superconducting circuits, advancing the use of parametric resonators for critically-enhanced quantum information applications.

Suggested Citation

  • Guillaume Beaulieu & Fabrizio Minganti & Simone Frasca & Vincenzo Savona & Simone Felicetti & Roberto Candia & Pasquale Scarlino, 2025. "Observation of first- and second-order dissipative phase transitions in a two-photon driven Kerr resonator," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56830-w
    DOI: 10.1038/s41467-025-56830-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-56830-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-56830-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ruichao Ma & Brendan Saxberg & Clai Owens & Nelson Leung & Yao Lu & Jonathan Simon & David I. Schuster, 2019. "Author Correction: A dissipatively stabilized Mott insulator of photons," Nature, Nature, vol. 570(7761), pages 52-52, June.
    2. Ruichao Ma & Brendan Saxberg & Clai Owens & Nelson Leung & Yao Lu & Jonathan Simon & David I. Schuster, 2019. "A dissipatively stabilized Mott insulator of photons," Nature, Nature, vol. 566(7742), pages 51-57, February.
    3. Z.R. Lin & K. Inomata & K. Koshino & W.D. Oliver & Y. Nakamura & J.S. Tsai & T. Yamamoto, 2014. "Josephson parametric phase-locked oscillator and its application to dispersive readout of superconducting qubits," Nature Communications, Nature, vol. 5(1), pages 1-6, December.
    4. Dykman, M.I. & Krivoglaz, M.A., 1980. "Fluctuations in nonlinear systems near bifurcations corresponding to the appearance of new stable states," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 104(3), pages 480-494.
    5. Qi-Ming Chen & Michael Fischer & Yuki Nojiri & Michael Renger & Edwar Xie & Matti Partanen & Stefan Pogorzalek & Kirill G. Fedorov & Achim Marx & Frank Deppe & Rudolf Gross, 2023. "Quantum behavior of the Duffing oscillator at the dissipative phase transition," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qi-Ming Chen & Michael Fischer & Yuki Nojiri & Michael Renger & Edwar Xie & Matti Partanen & Stefan Pogorzalek & Kirill G. Fedorov & Achim Marx & Frank Deppe & Rudolf Gross, 2023. "Quantum behavior of the Duffing oscillator at the dissipative phase transition," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    2. T. Brown & E. Doucet & D. Ristè & G. Ribeill & K. Cicak & J. Aumentado & R. Simmonds & L. Govia & A. Kamal & L. Ranzani, 2022. "Trade off-free entanglement stabilization in a superconducting qutrit-qubit system," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    3. Yun-Hao Shi & Zheng-Hang Sun & Yong-Yi Wang & Zheng-An Wang & Yu-Ran Zhang & Wei-Guo Ma & Hao-Tian Liu & Kui Zhao & Jia-Cheng Song & Gui-Han Liang & Zheng-Yang Mei & Jia-Chi Zhang & Hao Li & Chi-Tong , 2024. "Probing spin hydrodynamics on a superconducting quantum simulator," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Abhi Saxena & Arnab Manna & Rahul Trivedi & Arka Majumdar, 2023. "Realizing tight-binding Hamiltonians using site-controlled coupled cavity arrays," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    5. Yao Lu & Aniket Maiti & John W. O. Garmon & Suhas Ganjam & Yaxing Zhang & Jahan Claes & Luigi Frunzio & Steven M. Girvin & Robert J. Schoelkopf, 2023. "High-fidelity parametric beamsplitting with a parity-protected converter," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Midya Parto & Christian Leefmans & James Williams & Franco Nori & Alireza Marandi, 2023. "Non-Abelian effects in dissipative photonic topological lattices," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    7. Beini Gao & Daniel G. Suárez-Forero & Supratik Sarkar & Tsung-Sheng Huang & Deric Session & Mahmoud Jalali Mehrabad & Ruihao Ni & Ming Xie & Pranshoo Upadhyay & Jonathan Vannucci & Sunil Mittal & Kenj, 2024. "Excitonic Mott insulator in a Bose-Fermi-Hubbard system of moiré WS2/WSe2 heterobilayer," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    8. Suhas Ganjam & Yanhao Wang & Yao Lu & Archan Banerjee & Chan U Lei & Lev Krayzman & Kim Kisslinger & Chenyu Zhou & Ruoshui Li & Yichen Jia & Mingzhao Liu & Luigi Frunzio & Robert J. Schoelkopf, 2024. "Surpassing millisecond coherence in on chip superconducting quantum memories by optimizing materials and circuit design," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    9. Zaka Ratsimalahelo, 2003. "Strongly Consistent Determination of the Rank of Matrix," EERI Research Paper Series EERI_RP_2003_04, Economics and Econometrics Research Institute (EERI), Brussels.
    10. Jiang, Y.D. & Zhang, W. & Zhang, Y.F. & Bi, Q.S., 2024. "Bursting oscillations in coupling Mathieu-van der Pol oscillator under parametric excitation," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56830-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.