IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-024-55600-4.html
   My bibliography  Save this article

A visual cortical-lateral posterior thalamic nucleus circuit regulates depressive-like behaviors in male mice

Author

Listed:
  • Fangfang Wu

    (Nanjing University of Chinese Medicine
    Southeast University)

  • Chenxi Gu

    (Nanjing Medical University)

  • Rui Xu

    (Nanjing University of Chinese Medicine)

  • Junwei Ma

    (Nanjing University of Chinese Medicine)

  • Lei Gao

    (Nanjing University of Chinese Medicine)

  • Youjiao Zhang

    (Nanjing University of Chinese Medicine)

  • Siyuan Bu

    (Southeast University)

  • Qingbo Lu

    (Southeast University)

  • Te Zhao

    (Chinese Academy of Sciences)

  • Yijun Han

    (Chinese Academy of Sciences)

  • Chen Guo

    (Zhejiang University School of Medicine)

  • Yihui Cui

    (Zhejiang University School of Medicine)

  • Jianhua Ding

    (Nanjing Medical University)

  • Gang Hu

    (Nanjing University of Chinese Medicine
    Nanjing Medical University)

  • Zhijun Zhang

    (Southeast University
    Chinese Academy of Sciences
    Southeast University
    Southeast University)

Abstract

Depression, a prevalent psychiatric disorder of ambiguous etiology and high heterogeneity, has been recently linked to the primary visual cortex (V1). However, the precise circuits mediating the impact of V1 on depressive-like behaviors are poorly understood. Here, we demonstrate that the V1, specifically the lateral posterior nucleus of the thalamus (LP)-projecting V1 glutamatergic subpopulation (GluV1→LP neurons), shows reduced activity after chronic restraint stress (CRS) in male mice, leading to depressive-like behaviors. Optogenetic or chemogenetic activation of these neurons ameliorated depressive-like behaviors in CRS-depressed mice, whereas reducing activity exacerbated these behaviors. This reduction in GluV1→LP neurons activity was predominantly due to a decrease in the guanine nucleotide-binding protein subunit gamma-4 (Gγ4). Overexpression of Gγ4 in the GluV1→LP neurons produced antidepressant-like effects, suggesting that Gγ4 is a crucial regulator of mood. Collectively, these results reveal a V1→LP circuit that modulates depressive-like behaviors, suggesting potential targets for therapeutic interventions.

Suggested Citation

  • Fangfang Wu & Chenxi Gu & Rui Xu & Junwei Ma & Lei Gao & Youjiao Zhang & Siyuan Bu & Qingbo Lu & Te Zhao & Yijun Han & Chen Guo & Yihui Cui & Jianhua Ding & Gang Hu & Zhijun Zhang, 2025. "A visual cortical-lateral posterior thalamic nucleus circuit regulates depressive-like behaviors in male mice," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55600-4
    DOI: 10.1038/s41467-024-55600-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-55600-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-55600-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yan Yang & Yihui Cui & Kangning Sang & Yiyan Dong & Zheyi Ni & Shuangshuang Ma & Hailan Hu, 2018. "Ketamine blocks bursting in the lateral habenula to rapidly relieve depression," Nature, Nature, vol. 554(7692), pages 317-322, February.
    2. Yunyun Han & Justus M. Kebschull & Robert A. A. Campbell & Devon Cowan & Fabia Imhof & Anthony M. Zador & Thomas D. Mrsic-Flogel, 2018. "The logic of single-cell projections from visual cortex," Nature, Nature, vol. 556(7699), pages 51-56, April.
    3. Seung Wook Oh & Julie A. Harris & Lydia Ng & Brent Winslow & Nicholas Cain & Stefan Mihalas & Quanxin Wang & Chris Lau & Leonard Kuan & Alex M. Henry & Marty T. Mortrud & Benjamin Ouellette & Thuc Ngh, 2014. "A mesoscale connectome of the mouse brain," Nature, Nature, vol. 508(7495), pages 207-214, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meng Wang & Ke Liu & Junxia Pan & Jialin Li & Pei Sun & Yongsheng Zhang & Longhui Li & Wenyan Guo & Qianqian Xin & Zhikai Zhao & Yurong Liu & Zhenqiao Zhou & Jing Lyu & Ting Zheng & Yunyun Han & Chunq, 2022. "Brain-wide projection reconstruction of single functionally defined neurons," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Li Yuan & Xiaoyin Chen & Huiqing Zhan & Gilbert L. Henry & Anthony M. Zador, 2024. "Massive multiplexing of spatially resolved single neuron projections with axonal BARseq," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    3. Yanjie Wang & Zhaonan Chen & Guofen Ma & Lizhao Wang & Yanmei Liu & Meiling Qin & Xiang Fei & Yifan Wu & Min Xu & Siyu Zhang, 2023. "A frontal transcallosal inhibition loop mediates interhemispheric balance in visuospatial processing," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    4. Luis M. Franco & Michael J. Goard, 2024. "Differential stability of task variable representations in retrosplenial cortex," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    5. Radhika Rawat & Elif Tunc-Ozcan & Tammy L. McGuire & Chian-Yu Peng & John A. Kessler, 2022. "Ketamine activates adult-born immature granule neurons to rapidly alleviate depression-like behaviors in mice," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Federico Malizia & Santiago Lamata-Otín & Mattia Frasca & Vito Latora & Jesús Gómez-Gardeñes, 2025. "Hyperedge overlap drives explosive transitions in systems with higher-order interactions," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    7. Yufeng Liu & Shengdian Jiang & Yingxin Li & Sujun Zhao & Zhixi Yun & Zuo-Han Zhao & Lingli Zhang & Gaoyu Wang & Xin Chen & Linus Manubens-Gil & Yuning Hang & Qiaobo Gong & Yuanyuan Li & Penghao Qian &, 2024. "Neuronal diversity and stereotypy at multiple scales through whole brain morphometry," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    8. Wenqi Chen & Jiejunyi Liang & Qiyun Wu & Yunyun Han, 2024. "Anterior cingulate cortex provides the neural substrates for feedback-driven iteration of decision and value representation," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    9. Soo Hyun Yang & Esther Yang & Jaekwang Lee & Jin Yong Kim & Hyeijung Yoo & Hyung Sun Park & Jin Taek Jung & Dongmin Lee & Sungkun Chun & Yong Sang Jo & Gyeong Hee Pyeon & Jae-Yong Park & Hyun Woo Lee , 2023. "Neural mechanism of acute stress regulation by trace aminergic signalling in the lateral habenula in male mice," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    10. Sydney C Weiser & Brian R Mullen & Desiderio Ascencio & James B Ackman, 2023. "Data-driven segmentation of cortical calcium dynamics," PLOS Computational Biology, Public Library of Science, vol. 19(5), pages 1-36, May.
    11. Wen-Hao Zhang & Si Wu & Krešimir Josić & Brent Doiron, 2023. "Sampling-based Bayesian inference in recurrent circuits of stochastic spiking neurons," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    12. Jun Liu & Arron F. Hall & Dong V. Wang, 2024. "Emerging many-to-one weighted mapping in hippocampus-amygdala network underlies memory formation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    13. Alessandra Griffa & Mathieu Mach & Julien Dedelley & Daniel Gutierrez-Barragan & Alessandro Gozzi & Gilles Allali & Joanes Grandjean & Dimitri Ville & Enrico Amico, 2023. "Evidence for increased parallel information transmission in human brain networks compared to macaques and male mice," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    14. Anthony Renard & Evan R. Harrell & Brice Bathellier, 2022. "Olfactory modulation of barrel cortex activity during active whisking and passive whisker stimulation," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    15. Marcus N. Leiwe & Satoshi Fujimoto & Toshikazu Baba & Daichi Moriyasu & Biswanath Saha & Richi Sakaguchi & Shigenori Inagaki & Takeshi Imai, 2024. "Automated neuronal reconstruction with super-multicolour Tetbow labelling and threshold-based clustering of colour hues," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    16. Bo Feng & Yide Liu & Jiahang Zhang & Shaoxing Qu & Wei Yang, 2025. "Miniature origami robot for various biological micromanipulations," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    17. Zhang, Xu & Min, Fuhong & Dou, Yiping & Xu, Yeyin, 2023. "Bifurcation analysis of a modified FitzHugh-Nagumo neuron with electric field," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    18. Marghoti, Gabriel & de Lima Prado, Thiago & Conte, Arturo Cagnato & Ferrari, Fabiano Alan Serafim & Lopes, Sergio Roberto, 2022. "Intermittent chimera-like and bi-stable synchronization states in network of distinct Izhikevich neurons," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    19. Yuwen Chen & Haoyu Yang & Yan Luo & Yijun Niu & Muzhou Yu & Shanjun Deng & Xuanhao Wang & Handi Deng & Haichao Chen & Lixia Gao & Xinjian Li & Pingyong Xu & Fudong Xue & Jing Miao & Song-Hai Shi & Yi , 2024. "Photoacoustic Tomography with Temporal Encoding Reconstruction (PATTERN) for cross-modal individual analysis of the whole brain," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    20. Vincent Paget-Blanc & Marlene E. Pfeffer & Marie Pronot & Paul Lapios & Maria-Florencia Angelo & Roman Walle & Fabrice P. Cordelières & Florian Levet & Stéphane Claverol & Sabrina Lacomme & Mélina Pet, 2022. "A synaptomic analysis reveals dopamine hub synapses in the mouse striatum," Nature Communications, Nature, vol. 13(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55600-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.