IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-57815-5.html
   My bibliography  Save this article

Miniature origami robot for various biological micromanipulations

Author

Listed:
  • Bo Feng

    (Zhejiang University
    Zhejiang University
    Zhejiang University
    Zhejiang University)

  • Yide Liu

    (Zhejiang University
    Zhejiang University
    Zhejiang University
    Zhejiang University)

  • Jiahang Zhang

    (Zhejiang University
    Zhejiang University
    Zhejiang University
    Zhejiang University)

  • Shaoxing Qu

    (Zhejiang University
    Zhejiang University
    Zhejiang University
    Zhejiang University)

  • Wei Yang

    (Zhejiang University
    Zhejiang University)

Abstract

Robotic micromanipulation is widely applied in biological research and medical procedures, providing a level of operational precision and stability beyond human capability. Compared with traditional micromanipulators that require assembly from many parts, origami manipulators offer advantages such as small size, lightweight, cost-effectiveness, and scalability. However, there are still requirements in biological application to address regarding stiffness, precision, and dexterity. Achieving a compact and functional parallel mechanism through origami structures remains a challenging problem. Here, we present the Micro-X4, a 4-Degree-of-Freedom (4-DoF) origami micromanipulator, which offers a workspace of 756 mm3, with a precision of 346 nm and a stiffness of 2738 N/m. We conduct a series of micromanipulation tasks, ranging from the tissue scale to the subcellular scale, including pattern cutting, cell positioning and puncturing, as well as cell cutting and insertion. Contact force measurement is further integrated to demonstrate precise control over cell operations and puncturing. We envision the Micro-X4 as the foundation for the next generation of lightweight and compact micromanipulation devices.

Suggested Citation

  • Bo Feng & Yide Liu & Jiahang Zhang & Shaoxing Qu & Wei Yang, 2025. "Miniature origami robot for various biological micromanipulations," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57815-5
    DOI: 10.1038/s41467-025-57815-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-57815-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-57815-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yunyun Han & Justus M. Kebschull & Robert A. A. Campbell & Devon Cowan & Fabia Imhof & Anthony M. Zador & Thomas D. Mrsic-Flogel, 2018. "The logic of single-cell projections from visual cortex," Nature, Nature, vol. 556(7699), pages 51-56, April.
    2. Shijing Zhang & Yingxiang Liu & Jie Deng & Xiang Gao & Jing Li & Weiyi Wang & Mingxin Xun & Xuefeng Ma & Qingbing Chang & Junkao Liu & Weishan Chen & Jie Zhao, 2023. "Piezo robotic hand for motion manipulation from micro to macro," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Charlotte Schubert, 2011. "The deepest differences," Nature, Nature, vol. 480(7375), pages 133-137, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liao Qiao & Xiangyu Gao & Kaile Ren & Chaorui Qiu & Jinfeng Liu & Haonan Jin & Shuxiang Dong & Zhuo Xu & Fei Li, 2024. "Designing transparent piezoelectric metasurfaces for adaptive optics," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Meng Wang & Ke Liu & Junxia Pan & Jialin Li & Pei Sun & Yongsheng Zhang & Longhui Li & Wenyan Guo & Qianqian Xin & Zhikai Zhao & Yurong Liu & Zhenqiao Zhou & Jing Lyu & Ting Zheng & Yunyun Han & Chunq, 2022. "Brain-wide projection reconstruction of single functionally defined neurons," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. Li Yuan & Xiaoyin Chen & Huiqing Zhan & Gilbert L. Henry & Anthony M. Zador, 2024. "Massive multiplexing of spatially resolved single neuron projections with axonal BARseq," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    4. Fangfang Wu & Chenxi Gu & Rui Xu & Junwei Ma & Lei Gao & Youjiao Zhang & Siyuan Bu & Qingbo Lu & Te Zhao & Yijun Han & Chen Guo & Yihui Cui & Jianhua Ding & Gang Hu & Zhijun Zhang, 2025. "A visual cortical-lateral posterior thalamic nucleus circuit regulates depressive-like behaviors in male mice," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    5. Camden J. MacDowell & Alexandra Libby & Caroline I. Jahn & Sina Tafazoli & Adel Ardalan & Timothy J. Buschman, 2025. "Multiplexed subspaces route neural activity across brain-wide networks," Nature Communications, Nature, vol. 16(1), pages 1-21, December.
    6. Yanjie Wang & Zhaonan Chen & Guofen Ma & Lizhao Wang & Yanmei Liu & Meiling Qin & Xiang Fei & Yifan Wu & Min Xu & Siyu Zhang, 2023. "A frontal transcallosal inhibition loop mediates interhemispheric balance in visuospatial processing," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    7. Xu Han & Ben Vermaercke & Vincent Bonin, 2022. "Diversity of spatiotemporal coding reveals specialized visual processing streams in the mouse cortex," Nature Communications, Nature, vol. 13(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57815-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.