IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50208-0.html
   My bibliography  Save this article

Tunable quantum emitters on large-scale foundry silicon photonics

Author

Listed:
  • Hugo Larocque

    (Massachusetts Institute of Technology)

  • Mustafa Atabey Buyukkaya

    (University of Maryland)

  • Carlos Errando-Herranz

    (Massachusetts Institute of Technology
    University of Münster)

  • Camille Papon

    (Massachusetts Institute of Technology)

  • Samuel Harper

    (University of Maryland)

  • Max Tao

    (Massachusetts Institute of Technology)

  • Jacques Carolan

    (Massachusetts Institute of Technology
    University College London)

  • Chang-Min Lee

    (University of Maryland)

  • Christopher J. K. Richardson

    (University of Maryland)

  • Gerald L. Leake

    (State University of New York Polytechnic Institute)

  • Daniel J. Coleman

    (State University of New York Polytechnic Institute)

  • Michael L. Fanto

    (Information Directorate)

  • Edo Waks

    (University of Maryland)

  • Dirk Englund

    (Massachusetts Institute of Technology)

Abstract

Controlling large-scale many-body quantum systems at the level of single photons and single atomic systems is a central goal in quantum information science and technology. Intensive research and development has propelled foundry-based silicon-on-insulator photonic integrated circuits to a leading platform for large-scale optical control with individual mode programmability. However, integrating atomic quantum systems with single-emitter tunability remains an open challenge. Here, we overcome this barrier through the hybrid integration of multiple InAs/InP microchiplets containing high-brightness infrared semiconductor quantum dot single photon emitters into advanced silicon-on-insulator photonic integrated circuits fabricated in a 300 mm foundry process. With this platform, we achieve single-photon emission via resonance fluorescence and scalable emission wavelength tunability. The combined control of photonic and quantum systems opens the door to programmable quantum information processors manufactured in leading semiconductor foundries.

Suggested Citation

  • Hugo Larocque & Mustafa Atabey Buyukkaya & Carlos Errando-Herranz & Camille Papon & Samuel Harper & Max Tao & Jacques Carolan & Chang-Min Lee & Christopher J. K. Richardson & Gerald L. Leake & Daniel , 2024. "Tunable quantum emitters on large-scale foundry silicon photonics," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50208-0
    DOI: 10.1038/s41467-024-50208-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50208-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50208-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jie Sun & Erman Timurdogan & Ami Yaacobi & Ehsan Shah Hosseini & Michael R. Watts, 2013. "Large-scale nanophotonic phased array," Nature, Nature, vol. 493(7431), pages 195-199, January.
    2. Ashish Chanana & Hugo Larocque & Renan Moreira & Jacques Carolan & Biswarup Guha & Emerson G. Melo & Vikas Anant & Jindong Song & Dirk Englund & Daniel J. Blumenthal & Kartik Srinivasan & Marcelo Dava, 2022. "Ultra-low loss quantum photonic circuits integrated with single quantum emitters," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. D. Istrati & Y. Pilnyak & J. C. Loredo & C. Antón & N. Somaschi & P. Hilaire & H. Ollivier & M. Esmann & L. Cohen & L. Vidro & C. Millet & A. Lemaître & I. Sagnes & A. Harouri & L. Lanco & P. Senellar, 2020. "Sequential generation of linear cluster states from a single photon emitter," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    4. Liang Zhai & Matthias C. Löbl & Giang N. Nguyen & Julian Ritzmann & Alisa Javadi & Clemens Spinnler & Andreas D. Wieck & Arne Ludwig & Richard J. Warburton, 2020. "Low-noise GaAs quantum dots for quantum photonics," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    5. Wim Bogaerts & Daniel Pérez & José Capmany & David A. B. Miller & Joyce Poon & Dirk Englund & Francesco Morichetti & Andrea Melloni, 2020. "Programmable photonic circuits," Nature, Nature, vol. 586(7828), pages 207-216, October.
    6. Marcelo Davanco & Jin Liu & Luca Sapienza & Chen-Zhao Zhang & José Vinícius Miranda Cardoso & Varun Verma & Richard Mirin & Sae Woo Nam & Liu Liu & Kartik Srinivasan, 2017. "Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices," Nature Communications, Nature, vol. 8(1), pages 1-12, December.
    7. R. Stockill & C. Le Gall & C. Matthiesen & L. Huthmacher & E. Clarke & M. Hugues & M. Atatüre, 2016. "Quantum dot spin coherence governed by a strained nuclear environment," Nature Communications, Nature, vol. 7(1), pages 1-7, November.
    8. Adrien Dousse & Jan Suffczyński & Alexios Beveratos & Olivier Krebs & Aristide Lemaître & Isabelle Sagnes & Jacqueline Bloch & Paul Voisin & Pascale Senellart, 2010. "Ultrabright source of entangled photon pairs," Nature, Nature, vol. 466(7303), pages 217-220, July.
    9. A. Javadi & I. Söllner & M. Arcari & S. Lindskov Hansen & L. Midolo & S. Mahmoodian & G Kiršanskė & T. Pregnolato & E. H. Lee & J. D. Song & S. Stobbe & P. Lodahl, 2015. "Single-photon non-linear optics with a quantum dot in a waveguide," Nature Communications, Nature, vol. 6(1), pages 1-5, December.
    10. L. Wells & T. Müller & R. M. Stevenson & J. Skiba-Szymanska & D. A. Ritchie & A. J. Shields, 2023. "Coherent light scattering from a telecom C-band quantum dot," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dominik D. Bühler & Matthias Weiß & Antonio Crespo-Poveda & Emeline D. S. Nysten & Jonathan J. Finley & Kai Müller & Paulo V. Santos & Mauricio M. Lima & Hubert J. Krenner, 2022. "On-chip generation and dynamic piezo-optomechanical rotation of single photons," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Paweł Holewa & Daniel A. Vajner & Emilia Zięba-Ostój & Maja Wasiluk & Benedek Gaál & Aurimas Sakanas & Marek Burakowski & Paweł Mrowiński & Bartosz Krajnik & Meng Xiong & Kresten Yvind & Niels Gregers, 2024. "High-throughput quantum photonic devices emitting indistinguishable photons in the telecom C-band," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. H. H. Zhu & J. Zou & H. Zhang & Y. Z. Shi & S. B. Luo & N. Wang & H. Cai & L. X. Wan & B. Wang & X. D. Jiang & J. Thompson & X. S. Luo & X. H. Zhou & L. M. Xiao & W. Huang & L. Patrick & M. Gu & L. C., 2022. "Space-efficient optical computing with an integrated chip diffractive neural network," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Łukasz Dusanowski & Cornelius Nawrath & Simone L. Portalupi & Michael Jetter & Tobias Huber & Sebastian Klembt & Peter Michler & Sven Höfling, 2022. "Optical charge injection and coherent control of a quantum-dot spin-qubit emitting at telecom wavelengths," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    5. Mark Dong & Julia M. Boyle & Kevin J. Palm & Matthew Zimmermann & Alex Witte & Andrew J. Leenheer & Daniel Dominguez & Gerald Gilbert & Matt Eichenfield & Dirk Englund, 2023. "Synchronous micromechanically resonant programmable photonic circuits," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    6. Takaya Ochiai & Tomohiro Akazawa & Yuto Miyatake & Kei Sumita & Shuhei Ohno & Stéphane Monfray & Frederic Boeuf & Kasidit Toprasertpong & Shinichi Takagi & Mitsuru Takenaka, 2022. "Ultrahigh-responsivity waveguide-coupled optical power monitor for Si photonic circuits operating at near-infrared wavelengths," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    7. Chen Chen & Jun-Yong Yan & Hans-Georg Babin & Jiefei Wang & Xingqi Xu & Xing Lin & Qianqian Yu & Wei Fang & Run-Ze Liu & Yong-Heng Huo & Han Cai & Wei E. I. Sha & Jiaxiang Zhang & Christian Heyn & And, 2024. "Wavelength-tunable high-fidelity entangled photon sources enabled by dual Stark effects," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    8. Ian Christen & Thomas Propson & Madison Sutula & Hamed Sattari & Gregory Choong & Christopher Panuski & Alexander Melville & Justin Mallek & Cole Brabec & Scott Hamilton & P. Benjamin Dixon & Adrian J, 2025. "An integrated photonic engine for programmable atomic control," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    9. P. Laccotripes & T. Müller & R. M. Stevenson & J. Skiba-Szymanska & D. A. Ritchie & A. J. Shields, 2024. "Spin-photon entanglement with direct photon emission in the telecom C-band," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    10. Yijian Meng & Ming Lai Chan & Rasmus B. Nielsen & Martin H. Appel & Zhe Liu & Ying Wang & Nikolai Bart & Andreas D. Wieck & Arne Ludwig & Leonardo Midolo & Alexey Tiranov & Anders S. Sørensen & Peter , 2024. "Deterministic photon source of genuine three-qubit entanglement," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    11. Ali Najjar Amiri & Aycan Deniz Vit & Kazim Gorgulu & Emir Salih Magden, 2024. "Deep photonic network platform enabling arbitrary and broadband optical functionality," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    12. Janderson R. Rodrigues & Utsav D. Dave & Aseema Mohanty & Xingchen Ji & Ipshita Datta & Shriddha Chaitanya & Euijae Shim & Ricardo Gutierrez-Jauregui & Vilson R. Almeida & Ana Asenjo-Garcia & Michal L, 2023. "All-dielectric scale invariant waveguide," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    13. Ashish Chanana & Hugo Larocque & Renan Moreira & Jacques Carolan & Biswarup Guha & Emerson G. Melo & Vikas Anant & Jindong Song & Dirk Englund & Daniel J. Blumenthal & Kartik Srinivasan & Marcelo Dava, 2022. "Ultra-low loss quantum photonic circuits integrated with single quantum emitters," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    14. Martin Ringbauer & Marcel Hinsche & Thomas Feldker & Paul K. Faehrmann & Juani Bermejo-Vega & Claire L. Edmunds & Lukas Postler & Roman Stricker & Christian D. Marciniak & Michael Meth & Ivan Pogorelo, 2025. "Verifiable measurement-based quantum random sampling with trapped ions," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    15. Kazuma Taki & Naoki Sekine & Kouhei Watanabe & Yuto Miyatake & Tomohiro Akazawa & Hiroya Sakumoto & Kasidit Toprasertpong & Shinichi Takagi & Mitsuru Takenaka, 2024. "Nonvolatile optical phase shift in ferroelectric hafnium zirconium oxide," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    16. N. Bart & C. Dangel & P. Zajac & N. Spitzer & J. Ritzmann & M. Schmidt & H. G. Babin & R. Schott & S. R. Valentin & S. Scholz & Y. Wang & R. Uppu & D. Najer & M. C. Löbl & N. Tomm & A. Javadi & N. O. , 2022. "Wafer-scale epitaxial modulation of quantum dot density," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    17. Dimitrios C. Tzarouchis & Brian Edwards & Nader Engheta, 2025. "Programmable wave-based analog computing machine: a metastructure that designs metastructures," Nature Communications, Nature, vol. 16(1), pages 1-7, December.
    18. Mathias J. R. Staunstrup & Alexey Tiranov & Ying Wang & Sven Scholz & Andreas D. Wieck & Arne Ludwig & Leonardo Midolo & Nir Rotenberg & Peter Lodahl & Hanna Le Jeannic, 2024. "Direct observation of a few-photon phase shift induced by a single quantum emitter in a waveguide," Nature Communications, Nature, vol. 15(1), pages 1-5, December.
    19. Yifan Xie & Shuo Feng & Linxiao Deng & Aoran Cai & Liyu Gan & Zifan Jiang & Peng Yang & Guilin Ye & Zaiqing Liu & Li Wen & Qing Zhu & Wanjun Zhang & Zhanpeng Zhang & Jiahe Li & Zeyu Feng & Chutian Zha, 2023. "Inverse design of chiral functional films by a robotic AI-guided system," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    20. Clemens Spinnler & Liang Zhai & Giang N. Nguyen & Julian Ritzmann & Andreas D. Wieck & Arne Ludwig & Alisa Javadi & Doris E. Reiter & Paweł Machnikowski & Richard J. Warburton & Matthias C. Löbl, 2021. "Optically driving the radiative Auger transition," Nature Communications, Nature, vol. 12(1), pages 1-6, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50208-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.