IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-35206-4.html
   My bibliography  Save this article

Ultrahigh-responsivity waveguide-coupled optical power monitor for Si photonic circuits operating at near-infrared wavelengths

Author

Listed:
  • Takaya Ochiai

    (The University of Tokyo)

  • Tomohiro Akazawa

    (The University of Tokyo)

  • Yuto Miyatake

    (The University of Tokyo)

  • Kei Sumita

    (The University of Tokyo)

  • Shuhei Ohno

    (The University of Tokyo)

  • Stéphane Monfray

    (STMicroelectronics)

  • Frederic Boeuf

    (STMicroelectronics)

  • Kasidit Toprasertpong

    (The University of Tokyo)

  • Shinichi Takagi

    (The University of Tokyo)

  • Mitsuru Takenaka

    (The University of Tokyo)

Abstract

A phototransistor is a promising candidate as an optical power monitor in Si photonic circuits since the internal gain of photocurrent enables high responsivity. However, state-of-the-art waveguide-coupled phototransistors suffer from a responsivity of lower than 103 A/W, which is insufficient for detecting very low power light. Here, we present a waveguide-coupled phototransistor operating at a 1.3 μm wavelength, which consists of an InGaAs ultrathin channel on a Si waveguide working as a gate electrode to increase the responsivity. The Si waveguide gate underneath the InGaAs ultrathin channel enables the effective control of transistor current without optical absorption by the gate metal. As a result, our phototransistor achieved the highest responsivity of approximately 106 A/W among the waveguide-coupled phototransistors, allowing us to detect light of 621 fW propagating in the Si waveguide. The high responsivity and the reasonable response time of approximately 100 μs make our phototransistor promising as an effective optical power monitor in Si photonic circuits.

Suggested Citation

  • Takaya Ochiai & Tomohiro Akazawa & Yuto Miyatake & Kei Sumita & Shuhei Ohno & Stéphane Monfray & Frederic Boeuf & Kasidit Toprasertpong & Shinichi Takagi & Mitsuru Takenaka, 2022. "Ultrahigh-responsivity waveguide-coupled optical power monitor for Si photonic circuits operating at near-infrared wavelengths," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35206-4
    DOI: 10.1038/s41467-022-35206-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35206-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35206-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jie Sun & Erman Timurdogan & Ami Yaacobi & Ehsan Shah Hosseini & Michael R. Watts, 2013. "Large-scale nanophotonic phased array," Nature, Nature, vol. 493(7431), pages 195-199, January.
    2. J. M. Arrazola & V. Bergholm & K. Brádler & T. R. Bromley & M. J. Collins & I. Dhand & A. Fumagalli & T. Gerrits & A. Goussev & L. G. Helt & J. Hundal & T. Isacsson & R. B. Israel & J. Izaac & S. Jaha, 2021. "Quantum circuits with many photons on a programmable nanophotonic chip," Nature, Nature, vol. 591(7848), pages 54-60, March.
    3. Wim Bogaerts & Daniel Pérez & José Capmany & David A. B. Miller & Joyce Poon & Dirk Englund & Francesco Morichetti & Andrea Melloni, 2020. "Programmable photonic circuits," Nature, Nature, vol. 586(7828), pages 207-216, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. H. H. Zhu & J. Zou & H. Zhang & Y. Z. Shi & S. B. Luo & N. Wang & H. Cai & L. X. Wan & B. Wang & X. D. Jiang & J. Thompson & X. S. Luo & X. H. Zhou & L. M. Xiao & W. Huang & L. Patrick & M. Gu & L. C., 2022. "Space-efficient optical computing with an integrated chip diffractive neural network," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Mark Dong & Julia M. Boyle & Kevin J. Palm & Matthew Zimmermann & Alex Witte & Andrew J. Leenheer & Daniel Dominguez & Gerald Gilbert & Matt Eichenfield & Dirk Englund, 2023. "Synchronous micromechanically resonant programmable photonic circuits," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Sunkyu Yu & Namkyoo Park, 2023. "Heavy tails and pruning in programmable photonic circuits for universal unitaries," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Yang Yang & Robert J. Chapman & Ben Haylock & Francesco Lenzini & Yogesh N. Joglekar & Mirko Lobino & Alberto Peruzzo, 2024. "Programmable high-dimensional Hamiltonian in a photonic waveguide array," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    5. Mehmet Berkay On & Farshid Ashtiani & David Sanchez-Jacome & Daniel Perez-Lopez & S. J. Ben Yoo & Andrea Blanco-Redondo, 2024. "Programmable integrated photonics for topological Hamiltonians," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    6. Han Zhao & Bingzhao Li & Huan Li & Mo Li, 2022. "Enabling scalable optical computing in synthetic frequency dimension using integrated cavity acousto-optics," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    7. Steven Becker & Dirk Englund & Birgit Stiller, 2024. "An optoacoustic field-programmable perceptron for recurrent neural networks," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    8. Ruobing Qian & Kevin C. Zhou & Jingkai Zhang & Christian Viehland & Al-Hafeez Dhalla & Joseph A. Izatt, 2022. "Video-rate high-precision time-frequency multiplexed 3D coherent ranging," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Maoliang Wei & Kai Xu & Bo Tang & Junying Li & Yiting Yun & Peng Zhang & Yingchun Wu & Kangjian Bao & Kunhao Lei & Zequn Chen & Hui Ma & Chunlei Sun & Ruonan Liu & Ming Li & Lan Li & Hongtao Lin, 2024. "Monolithic back-end-of-line integration of phase change materials into foundry-manufactured silicon photonics," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    10. Ali Najjar Amiri & Aycan Deniz Vit & Kazim Gorgulu & Emir Salih Magden, 2024. "Deep photonic network platform enabling arbitrary and broadband optical functionality," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    11. X. L. He & Yong Lu & D. Q. Bao & Hang Xue & W. B. Jiang & Z. Wang & A. F. Roudsari & Per Delsing & J. S. Tsai & Z. R. Lin, 2023. "Fast generation of Schrödinger cat states using a Kerr-tunable superconducting resonator," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    12. Zi Wang & Lorry Chang & Feifan Wang & Tiantian Li & Tingyi Gu, 2022. "Integrated photonic metasystem for image classifications at telecommunication wavelength," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    13. Joo, Mingyu & Kim, Seung Hyun & Ghose, Anindya & Wilbur, Kenneth C., 2023. "Designing Distributed Ledger technologies, like Blockchain, for advertising markets," International Journal of Research in Marketing, Elsevier, vol. 40(1), pages 12-21.
    14. Xuan-Kun Li & Jian-Xu Ma & Xiang-Yu Li & Jun-Jie Hu & Chuan-Yang Ding & Feng-Kai Han & Xiao-Min Guo & Xi Tan & Xian-Min Jin, 2024. "High-efficiency reinforcement learning with hybrid architecture photonic integrated circuit," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    15. F. H. B. Somhorst & R. Meer & M. Correa Anguita & R. Schadow & H. J. Snijders & M. Goede & B. Kassenberg & P. Venderbosch & C. Taballione & J. P. Epping & H. H. Vlekkert & J. Timmerhuis & J. F. F. Bul, 2023. "Quantum simulation of thermodynamics in an integrated quantum photonic processor," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    16. Emma Lomonte & Martin A. Wolff & Fabian Beutel & Simone Ferrari & Carsten Schuck & Wolfram H. P. Pernice & Francesco Lenzini, 2021. "Single-photon detection and cryogenic reconfigurability in lithium niobate nanophotonic circuits," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    17. Dominik D. Bühler & Matthias Weiß & Antonio Crespo-Poveda & Emeline D. S. Nysten & Jonathan J. Finley & Kai Müller & Paulo V. Santos & Mauricio M. Lima & Hubert J. Krenner, 2022. "On-chip generation and dynamic piezo-optomechanical rotation of single photons," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    18. Ju Young Kim & Juho Park & Gregory R. Holdman & Jacob T. Heiden & Shinho Kim & Victor W. Brar & Min Seok Jang, 2022. "Full 2π tunable phase modulation using avoided crossing of resonances," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    19. Zihan Li & Rui Ning Wang & Grigory Lihachev & Junyin Zhang & Zelin Tan & Mikhail Churaev & Nikolai Kuznetsov & Anat Siddharth & Mohammad J. Bereyhi & Johann Riemensberger & Tobias J. Kippenberg, 2023. "High density lithium niobate photonic integrated circuits," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    20. Wen Zhou & Bowei Dong & Nikolaos Farmakidis & Xuan Li & Nathan Youngblood & Kairan Huang & Yuhan He & C. David Wright & Wolfram H. P. Pernice & Harish Bhaskaran, 2023. "In-memory photonic dot-product engine with electrically programmable weight banks," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35206-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.