IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47673-y.html
   My bibliography  Save this article

Stretchable phosphorescent polymers by multiphase engineering

Author

Listed:
  • Nan Gan

    (Northwestern Polytechnical University)

  • Xin Zou

    (Northwestern Polytechnical University)

  • Zhao Qian

    (Jilin University)

  • Anqi Lv

    (Nanjing Tech University (NanjingTech))

  • Lan Wang

    (Nanjing Tech University (NanjingTech))

  • Huili Ma

    (Nanjing Tech University (NanjingTech))

  • Hu-Jun Qian

    (Jilin University)

  • Long Gu

    (Northwestern Polytechnical University
    Research and Development Institute of Northwestern Polytechnical University in Shenzhen)

  • Zhongfu An

    (Nanjing Tech University (NanjingTech))

  • Wei Huang

    (Northwestern Polytechnical University
    Nanjing Tech University (NanjingTech))

Abstract

Stretchable phosphorescence materials potentially enable applications in diverse advanced fields in wearable electronics. However, achieving room-temperature phosphorescence materials simultaneously featuring long-lived emission and good stretchability is challenging because it is hard to balance the rigidity and flexibility in the same polymer. Here we present a multiphase engineering for obtaining stretchable phosphorescent materials by combining stiffness and softness simultaneously in well-designed block copolymers. Due to the microphase separation, copolymers demonstrate an intrinsic stretchability of 712%, maintaining an ultralong phosphorescence lifetime of up to 981.11 ms. This multiphase engineering is generally applicable to a series of binary and ternary initiator systems with color-tunable phosphorescence in the visible range. Moreover, these copolymers enable multi-level volumetric data encryption and stretchable afterglow display. This work provides a fundamental understanding of the nanostructures and material properties for designing stretchable materials and extends the potential of phosphorescence polymers.

Suggested Citation

  • Nan Gan & Xin Zou & Zhao Qian & Anqi Lv & Lan Wang & Huili Ma & Hu-Jun Qian & Long Gu & Zhongfu An & Wei Huang, 2024. "Stretchable phosphorescent polymers by multiphase engineering," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47673-y
    DOI: 10.1038/s41467-024-47673-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47673-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47673-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Valentin A. Bobrin & Yin Yao & Xiaobing Shi & Yuan Xiu & Jin Zhang & Nathaniel Corrigan & Cyrille Boyer, 2022. "Nano- to macro-scale control of 3D printed materials via polymerization induced microphase separation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Nan Gan & Xin Zou & Mengyang Dong & Yanze Wang & Xiao Wang & Anqi Lv & Zhicheng Song & Yuanyuan Zhang & Wenqi Gong & Zhu Zhao & Ziyang Wang & Zixing Zhou & Huili Ma & Xiaowang Liu & Qiushui Chen & Hui, 2022. "Organic phosphorescent scintillation from copolymers by X-ray irradiation," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Jing Chen & Yiyang Gao & Lei Shi & Wei Yu & Zongjie Sun & Yifan Zhou & Shuang Liu & Heng Mao & Dongyang Zhang & Tongqing Lu & Quan Chen & Demei Yu & Shujiang Ding, 2022. "Phase-locked constructing dynamic supramolecular ionic conductive elastomers with superior toughness, autonomous self-healing and recyclability," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Xiang Shi & Yong Zuo & Peng Zhai & Jiahao Shen & Yangyiwei Yang & Zhen Gao & Meng Liao & Jingxia Wu & Jiawei Wang & Xiaojie Xu & Qi Tong & Bo Zhang & Bingjie Wang & Xuemei Sun & Lihua Zhang & Qibing P, 2021. "Large-area display textiles integrated with functional systems," Nature, Nature, vol. 591(7849), pages 240-245, March.
    5. Naoji Matsuhisa & Simiao Niu & Stephen J. K. O’Neill & Jiheong Kang & Yuto Ochiai & Toru Katsumata & Hung-Chin Wu & Minoru Ashizawa & Ging-Ji Nathan Wang & Donglai Zhong & Xuelin Wang & Xiwen Gong & R, 2021. "High-frequency and intrinsically stretchable polymer diodes," Nature, Nature, vol. 600(7888), pages 246-252, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hailei Zhang & Bo Zhang & Chongyang Cai & Kaiming Zhang & Yu Wang & Yuan Wang & Yanmin Yang & Yonggang Wu & Xinwu Ba & Richard Hoogenboom, 2024. "Water-dispersible X-ray scintillators enabling coating and blending with polymer materials for multiple applications," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Dongxu Ma & Ming Ji & Hongbo Yi & Qingyu Wang & Fu Fan & Bo Feng & Mengjie Zheng & Yiqin Chen & Huigao Duan, 2024. "Pushing the thinness limit of silver films for flexible optoelectronic devices via ion-beam thinning-back process," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Hung-Chin Wu & Shayla Nikzad & Chenxin Zhu & Hongping Yan & Yang Li & Weijun Niu & James R. Matthews & Jie Xu & Naoji Matsuhisa & Prajwal Kammardi Arunachala & Reza Rastak & Christian Linder & Yu-Qing, 2023. "Highly stretchable polymer semiconductor thin films with multi-modal energy dissipation and high relative stretchability," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Pengwei Wang & Xiaohao Ma & Zhiqiang Lin & Fan Chen & Zijian Chen & Hong Hu & Hailong Xu & Xinyi Zhang & Yuqing Shi & Qiyao Huang & Yuanjing Lin & Zijian Zheng, 2024. "Well-defined in-textile photolithography towards permeable textile electronics," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Pei Zhang & Iek Man Lei & Guangda Chen & Jingsen Lin & Xingmei Chen & Jiajun Zhang & Chengcheng Cai & Xiangyu Liang & Ji Liu, 2022. "Integrated 3D printing of flexible electroluminescent devices and soft robots," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Rongzhou Lin & Han-Joon Kim & Sippanat Achavananthadith & Ze Xiong & Jason K. W. Lee & Yong Lin Kong & John S. Ho, 2022. "Digitally-embroidered liquid metal electronic textiles for wearable wireless systems," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Xiaoyue Wang & Jing Xu & Yaoming Zhang & Tingmei Wang & Qihua Wang & Song Li & Zenghui Yang & Xinrui Zhang, 2023. "A stretchable, mechanically robust polymer exhibiting shape-memory-assisted self-healing and clustering-triggered emission," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Tianyu Wang & Jialin Meng & Xufeng Zhou & Yue Liu & Zhenyu He & Qi Han & Qingxuan Li & Jiajie Yu & Zhenhai Li & Yongkai Liu & Hao Zhu & Qingqing Sun & David Wei Zhang & Peining Chen & Huisheng Peng & , 2022. "Reconfigurable neuromorphic memristor network for ultralow-power smart textile electronics," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    9. Fei Pei & Lin Wu & Yi Zhang & Yaqi Liao & Qi Kang & Yan Han & Huangwei Zhang & Yue Shen & Henghui Xu & Zhen Li & Yunhui Huang, 2024. "Interfacial self-healing polymer electrolytes for long-cycle solid-state lithium-sulfur batteries," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    10. Hailei Zhang & Boyan Tang & Bo Zhang & Kai Huang & Shanshan Li & Yuangong Zhang & Haisong Zhang & Libin Bai & Yonggang Wu & Yongqiang Cheng & Yanmin Yang & Gang Han, 2024. "X-ray-activated polymerization expanding the frontiers of deep-tissue hydrogel formation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    11. Junpeng Zeng & Daowei He & Jingsi Qiao & Yating Li & Li Sun & Weisheng Li & Jiacheng Xie & Si Gao & Lijia Pan & Peng Wang & Yong Xu & Yun Li & Hao Qiu & Yi Shi & Jian-Bin Xu & Wei Ji & Xinran Wang, 2023. "Ultralow contact resistance in organic transistors via orbital hybridization," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    12. Songlin Zhang & Mengjuan Zhou & Mingyang Liu & Zi Hao Guo & Hao Qu & Wenshuai Chen & Swee Ching Tan, 2023. "Ambient-conditions spinning of functional soft fibers via engineering molecular chain networks and phase separation," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    13. Yang Li & Nan Li & Wei Liu & Aleksander Prominski & Seounghun Kang & Yahao Dai & Youdi Liu & Huawei Hu & Shinya Wai & Shilei Dai & Zhe Cheng & Qi Su & Ping Cheng & Chen Wei & Lihua Jin & Jeffrey A. Hu, 2023. "Achieving tissue-level softness on stretchable electronics through a generalizable soft interlayer design," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    14. Haojie Lu & Yong Zhang & Mengjia Zhu & Shuo Li & Huarun Liang & Peng Bi & Shuai Wang & Haomin Wang & Linli Gan & Xun-En Wu & Yingying Zhang, 2024. "Intelligent perceptual textiles based on ionic-conductive and strong silk fibers," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    15. Hyung Woo Choi & Dong-Wook Shin & Jiajie Yang & Sanghyo Lee & Cátia Figueiredo & Stefano Sinopoli & Kay Ullrich & Petar Jovančić & Alessio Marrani & Roberto Momentè & João Gomes & Rita Branquinho & Um, 2022. "Smart textile lighting/display system with multifunctional fibre devices for large scale smart home and IoT applications," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    16. Ying Liu & Chan Wang & Zhuo Liu & Xuecheng Qu & Yansong Gai & Jiangtao Xue & Shengyu Chao & Jing Huang & Yuxiang Wu & Yusheng Li & Dan Luo & Zhou Li, 2024. "Self-encapsulated ionic fibers based on stress-induced adaptive phase transition for non-contact depth-of-field camouflage sensing," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    17. Tian Tian & Meifang Yang & Yuxuan Fang & Shuo Zhang & Yuxin Chen & Lianzhou Wang & Wu-Qiang Wu, 2023. "Large-area waterproof and durable perovskite luminescent textiles," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    18. Tianzhu Zhou & Yangzhe Yu & Bing He & Zhe Wang & Ting Xiong & Zhixun Wang & Yanting Liu & Jiwu Xin & Miao Qi & Haozhe Zhang & Xuhui Zhou & Liheng Gao & Qunfeng Cheng & Lei Wei, 2022. "Ultra-compact MXene fibers by continuous and controllable synergy of interfacial interactions and thermal drawing-induced stresses," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47673-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.