IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-63562-4.html
   My bibliography  Save this article

Conformal integration of multifunctional nanomembranes on fibers towards intelligent optical platform

Author

Listed:
  • Yunqi Wang

    (Fudan University
    Yiwu Research Institute of Fudan University
    Fudan University)

  • Yang Wang

    (Fudan University
    Yiwu Research Institute of Fudan University
    Fudan University)

  • Hong Zhu

    (Fudan University)

  • Chunyu You

    (Fudan University
    Yiwu Research Institute of Fudan University)

  • Yang Zong

    (Fudan University
    Yiwu Research Institute of Fudan University
    Fudan University)

  • Zhi Zheng

    (Fudan University
    Yiwu Research Institute of Fudan University
    Fudan University)

  • Xiang Dong

    (Fudan University
    Yiwu Research Institute of Fudan University
    Fudan University)

  • Yuhang Hu

    (Fudan University
    Yiwu Research Institute of Fudan University
    Fudan University)

  • Xiangzhong Chen

    (Fudan University
    Yiwu Research Institute of Fudan University
    Fudan University
    Fudan University)

  • Enming Song

    (Yiwu Research Institute of Fudan University
    Fudan University
    Fudan University)

  • Jizhai Cui

    (Fudan University
    Yiwu Research Institute of Fudan University
    Fudan University)

  • Gaoshan Huang

    (Fudan University
    Yiwu Research Institute of Fudan University
    Fudan University)

  • Yongfeng Mei

    (Fudan University
    Yiwu Research Institute of Fudan University
    Fudan University
    Fudan University)

Abstract

Integrating materials onto optical fibers, enabling optical signal tuning during low-loss light transmission, is essential in optical communications, biosensors, and implantable devices. Such tuning, based on light-matter interaction, requires tight physical and optical contact between materials and fibers. However, large surface curvature (>105 m−1) of fiber makes it challenging for most materials to transfer onto fibers with tight contact, due to insufficient small-range forces. This induces weak light-matter interaction and ineffective optical coupling. Here, we propose a general strategy for conformal integration of nanomembranes—including metals, oxides, semiconductors, and polymers—onto microfibers. This integration relies on engineered elastic and surface energies between nanomembranes and fibers, enabling tight wrapping. We demonstrate homogeneous and inhomogeneous nanomembranes conformally integrated on microfibers, which are further developed into sensors, modulators, filters, and photodetectors as plug-and-play devices. Our study provides a versatile platform for integrating multifunctional materials on fibers, enabling health monitoring and on-fiber photonic computing.

Suggested Citation

  • Yunqi Wang & Yang Wang & Hong Zhu & Chunyu You & Yang Zong & Zhi Zheng & Xiang Dong & Yuhang Hu & Xiangzhong Chen & Enming Song & Jizhai Cui & Gaoshan Huang & Yongfeng Mei, 2025. "Conformal integration of multifunctional nanomembranes on fibers towards intelligent optical platform," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63562-4
    DOI: 10.1038/s41467-025-63562-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-63562-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-63562-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xiang Shi & Yong Zuo & Peng Zhai & Jiahao Shen & Yangyiwei Yang & Zhen Gao & Meng Liao & Jingxia Wu & Jiawei Wang & Xiaojie Xu & Qi Tong & Bo Zhang & Bingjie Wang & Xuemei Sun & Lihua Zhang & Qibing P, 2021. "Large-area display textiles integrated with functional systems," Nature, Nature, vol. 591(7849), pages 240-245, March.
    2. Borui Xu & Xinyuan Zhang & Ziao Tian & Di Han & Xingce Fan & Yimeng Chen & Zengfeng Di & Teng Qiu & Yongfeng Mei, 2019. "Microdroplet-guided intercalation and deterministic delamination towards intelligent rolling origami," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    3. Limin Tong & Rafael R. Gattass & Jonathan B. Ashcom & Sailing He & Jingyi Lou & Mengyan Shen & Iva Maxwell & Eric Mazur, 2003. "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature, Nature, vol. 426(6968), pages 816-819, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dongxu Ma & Ming Ji & Hongbo Yi & Qingyu Wang & Fu Fan & Bo Feng & Mengjie Zheng & Yiqin Chen & Huigao Duan, 2024. "Pushing the thinness limit of silver films for flexible optoelectronic devices via ion-beam thinning-back process," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Pengwei Wang & Xiaohao Ma & Zhiqiang Lin & Fan Chen & Zijian Chen & Hong Hu & Hailong Xu & Xinyi Zhang & Yuqing Shi & Qiyao Huang & Yuanjing Lin & Zijian Zheng, 2024. "Well-defined in-textile photolithography towards permeable textile electronics," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Pei Zhang & Iek Man Lei & Guangda Chen & Jingsen Lin & Xingmei Chen & Jiajun Zhang & Chengcheng Cai & Xiangyu Liang & Ji Liu, 2022. "Integrated 3D printing of flexible electroluminescent devices and soft robots," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Nan Gan & Xin Zou & Zhao Qian & Anqi Lv & Lan Wang & Huili Ma & Hu-Jun Qian & Long Gu & Zhongfu An & Wei Huang, 2024. "Stretchable phosphorescent polymers by multiphase engineering," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Xing Li & Cuicui Cao & Chang Liu & Wenhao He & Kaibo Wu & Yang Wang & Borui Xu & Ziao Tian & Enming Song & Jizhai Cui & Gaoshan Huang & Changlin Zheng & Zengfeng Di & Xun Cao & Yongfeng Mei, 2022. "Self-rolling of vanadium dioxide nanomembranes for enhanced multi-level solar modulation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Ziyu Zhang & Binmin Wu & Yang Wang & Tianjun Cai & Mingze Ma & Chunyu You & Chang Liu & Guobang Jiang & Yuhang Hu & Xing Li & Xiang-Zhong Chen & Enming Song & Jizhai Cui & Gaoshan Huang & Suwit Kiravi, 2024. "Multilevel design and construction in nanomembrane rolling for three-dimensional angle-sensitive photodetection," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    7. Chuanqian Shi & Jing Jiang & Chenglong Li & Chenhong Chen & Wei Jian & Jizhou Song, 2024. "Precision-induced localized molten liquid metal stamps for damage-free transfer printing of ultrathin membranes and 3D objects," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. Rongzhou Lin & Han-Joon Kim & Sippanat Achavananthadith & Ze Xiong & Jason K. W. Lee & Yong Lin Kong & John S. Ho, 2022. "Digitally-embroidered liquid metal electronic textiles for wearable wireless systems," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Tianyu Wang & Jialin Meng & Xufeng Zhou & Yue Liu & Zhenyu He & Qi Han & Qingxuan Li & Jiajie Yu & Zhenhai Li & Yongkai Liu & Hao Zhu & Qingqing Sun & David Wei Zhang & Peining Chen & Huisheng Peng & , 2022. "Reconfigurable neuromorphic memristor network for ultralow-power smart textile electronics," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    10. Yue Zhang & Zechang Ming & Zijie Zhou & Xiaojie Wei & Jingjing Huang & Yufan Zhang & Weikang Li & Liming Zhu & Shuang Wang & Mengjie Wu & Zeren Lu & Xinran Zhou & Jiaqing Xiong, 2025. "A temperature-adaptive component-dynamic-coordinated strategy for high-performance elastic conductive fibers," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    11. Yuanlong Li & Weifeng Yang & Alexander V. Shokurov & Carlo Menon, 2025. "Leveraging body dielectric polarization for ambient electromagnetic energy recovery via e-textile," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    12. Songlin Zhang & Mengjuan Zhou & Mingyang Liu & Zi Hao Guo & Hao Qu & Wenshuai Chen & Swee Ching Tan, 2023. "Ambient-conditions spinning of functional soft fibers via engineering molecular chain networks and phase separation," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    13. Haojie Lu & Yong Zhang & Mengjia Zhu & Shuo Li & Huarun Liang & Peng Bi & Shuai Wang & Haomin Wang & Linli Gan & Xun-En Wu & Yingying Zhang, 2024. "Intelligent perceptual textiles based on ionic-conductive and strong silk fibers," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    14. Tian, Xinyi & Wang, Jun & Ji, Jie & Lu, Guodong, 2025. "The performance investigation of the flexible photovoltaic cell under non-uniform distributed illumination," Renewable Energy, Elsevier, vol. 240(C).
    15. Yikun Duan & Zhaoyang Sun & Qiangqiang Zhang & Yalin Dong & Yagai Lin & Dongxiao Ji & Xiaohong Qin, 2025. "Constructing electrospun 3D liquid metal adhesion channel on stretchable yarns for broad-range strain-insensitivity smart textiles," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    16. Hyung Woo Choi & Dong-Wook Shin & Jiajie Yang & Sanghyo Lee & Cátia Figueiredo & Stefano Sinopoli & Kay Ullrich & Petar Jovančić & Alessio Marrani & Roberto Momentè & João Gomes & Rita Branquinho & Um, 2022. "Smart textile lighting/display system with multifunctional fibre devices for large scale smart home and IoT applications," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    17. Ying Liu & Chan Wang & Zhuo Liu & Xuecheng Qu & Yansong Gai & Jiangtao Xue & Shengyu Chao & Jing Huang & Yuxiang Wu & Yusheng Li & Dan Luo & Zhou Li, 2024. "Self-encapsulated ionic fibers based on stress-induced adaptive phase transition for non-contact depth-of-field camouflage sensing," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    18. Guangtao Zan & Wei Jiang & HoYeon Kim & Kaiying Zhao & Shengyou Li & Kyuho Lee & Jihye Jang & Gwanho Kim & EunAe Shin & Woojoong Kim & Jin Woo Oh & Yeonji Kim & Jong Woong Park & Taebin Kim & Seonju L, 2024. "A core–shell fiber moisture-driven electric generator enabled by synergetic complex coacervation and built-in potential," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    19. Xuemei Fu & Guanxiang Wan & Hongchen Guo & Han-Joon Kim & Zijie Yang & Yu Jun Tan & John S. Ho & Benjamin C. K. Tee, 2024. "Self-healing actuatable electroluminescent fibres," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    20. Hong Xiang & Yongfu Li & Qinglong Liao & Lei Xia & Xiaodong Wu & Huang Zhou & Chunmei Li & Xing Fan, 2024. "Recent Advances in Smart Fabric-Type Wearable Electronics toward Comfortable Wearing," Energies, MDPI, vol. 17(11), pages 1-36, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-63562-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.