IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-40191-3.html
   My bibliography  Save this article

Achieving tissue-level softness on stretchable electronics through a generalizable soft interlayer design

Author

Listed:
  • Yang Li

    (The University of Chicago)

  • Nan Li

    (The University of Chicago)

  • Wei Liu

    (The University of Chicago)

  • Aleksander Prominski

    (The University of Chicago)

  • Seounghun Kang

    (The University of Chicago)

  • Yahao Dai

    (The University of Chicago)

  • Youdi Liu

    (The University of Chicago)

  • Huawei Hu

    (The University of Chicago)

  • Shinya Wai

    (The University of Chicago)

  • Shilei Dai

    (The University of Chicago)

  • Zhe Cheng

    (The University of Chicago)

  • Qi Su

    (The University of Chicago)

  • Ping Cheng

    (The University of Chicago)

  • Chen Wei

    (University of California Los Angeles)

  • Lihua Jin

    (University of California Los Angeles)

  • Jeffrey A. Hubbell

    (The University of Chicago)

  • Bozhi Tian

    (The University of Chicago)

  • Sihong Wang

    (The University of Chicago
    Argonne National Laboratory)

Abstract

Soft and stretchable electronics have emerged as highly promising tools for biomedical diagnosis and biological studies, as they interface intimately with the human body and other biological systems. Most stretchable electronic materials and devices, however, still have Young’s moduli orders of magnitude higher than soft bio-tissues, which limit their conformability and long-term biocompatibility. Here, we present a design strategy of soft interlayer for allowing the use of existing stretchable materials of relatively high moduli to versatilely realize stretchable devices with ultralow tissue-level moduli. We have demonstrated stretchable transistor arrays and active-matrix circuits with moduli below 10 kPa—over two orders of magnitude lower than the current state of the art. Benefiting from the increased conformability to irregular and dynamic surfaces, the ultrasoft device created with the soft interlayer design realizes electrophysiological recording on an isolated heart with high adaptability, spatial stability, and minimal influence on ventricle pressure. In vivo biocompatibility tests also demonstrate the benefit of suppressing foreign-body responses for long-term implantation. With its general applicability to diverse materials and devices, this soft-interlayer design overcomes the material-level limitation for imparting tissue-level softness to a variety of bioelectronic devices.

Suggested Citation

  • Yang Li & Nan Li & Wei Liu & Aleksander Prominski & Seounghun Kang & Yahao Dai & Youdi Liu & Huawei Hu & Shinya Wai & Shilei Dai & Zhe Cheng & Qi Su & Ping Cheng & Chen Wei & Lihua Jin & Jeffrey A. Hu, 2023. "Achieving tissue-level softness on stretchable electronics through a generalizable soft interlayer design," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40191-3
    DOI: 10.1038/s41467-023-40191-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-40191-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-40191-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Vivian R. Feig & Helen Tran & Minah Lee & Zhenan Bao, 2018. "Mechanically tunable conductive interpenetrating network hydrogels that mimic the elastic moduli of biological tissue," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
    2. Hamza Atcha & Amit Jairaman & Jesse R. Holt & Vijaykumar S. Meli & Raji R. Nagalla & Praveen Krishna Veerasubramanian & Kyle T. Brumm & Huy E. Lim & Shivashankar Othy & Michael D. Cahalan & Medha M. P, 2021. "Mechanically activated ion channel Piezo1 modulates macrophage polarization and stiffness sensing," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    3. Vivian R. Feig & Helen Tran & Minah Lee & Zhenan Bao, 2018. "Author Correction: Mechanically tunable conductive interpenetrating network hydrogels that mimic the elastic moduli of biological tissue," Nature Communications, Nature, vol. 9(1), pages 1-1, December.
    4. Baoyang Lu & Hyunwoo Yuk & Shaoting Lin & Nannan Jian & Kai Qu & Jingkun Xu & Xuanhe Zhao, 2019. "Pure PEDOT:PSS hydrogels," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    5. Naoji Matsuhisa & Simiao Niu & Stephen J. K. O’Neill & Jiheong Kang & Yuto Ochiai & Toru Katsumata & Hung-Chin Wu & Minoru Ashizawa & Ging-Ji Nathan Wang & Donglai Zhong & Xuelin Wang & Xiwen Gong & R, 2021. "High-frequency and intrinsically stretchable polymer diodes," Nature, Nature, vol. 600(7888), pages 246-252, December.
    6. Koo Hyun Nam & Il H. Park & Seung Hwan Ko, 2012. "Patterning by controlled cracking," Nature, Nature, vol. 485(7397), pages 221-224, May.
    7. Sihong Wang & Jie Xu & Weichen Wang & Ging-Ji Nathan Wang & Reza Rastak & Francisco Molina-Lopez & Jong Won Chung & Simiao Niu & Vivian R. Feig & Jeffery Lopez & Ting Lei & Soon-Ki Kwon & Yeongin Kim , 2018. "Skin electronics from scalable fabrication of an intrinsically stretchable transistor array," Nature, Nature, vol. 555(7694), pages 83-88, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huating Ye & Baohu Wu & Shengtong Sun & Peiyi Wu, 2024. "Self-compliant ionic skin by leveraging hierarchical hydrogen bond association," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinjian Xie & Zhonggang Xu & Xin Yu & Hong Jiang & Hongjiao Li & Wenqian Feng, 2023. "Liquid-in-liquid printing of 3D and mechanically tunable conductive hydrogels," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Huimin He & Hao Li & Aoyang Pu & Wenxiu Li & Kiwon Ban & Lizhi Xu, 2023. "Hybrid assembly of polymeric nanofiber network for robust and electronically conductive hydrogels," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Xiao Liu & Jingping Wu & Keke Qiao & Guohan Liu & Zhengjin Wang & Tongqing Lu & Zhigang Suo & Jian Hu, 2022. "Topoarchitected polymer networks expand the space of material properties," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Jooyeun Chong & Changhoon Sung & Kum Seok Nam & Taewon Kang & Hyunjun Kim & Haeseung Lee & Hyunchang Park & Seongjun Park & Jiheong Kang, 2023. "Highly conductive tissue-like hydrogel interface through template-directed assembly," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Pengfei Xu & Shaojia Wang & Angela Lin & Hyun-Kee Min & Zhanfeng Zhou & Wenkun Dou & Yu Sun & Xi Huang & Helen Tran & Xinyu Liu, 2023. "Conductive and elastic bottlebrush elastomers for ultrasoft electronics," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Yangshuang Bian & Mingliang Zhu & Chengyu Wang & Kai Liu & Wenkang Shi & Zhiheng Zhu & Mingcong Qin & Fan Zhang & Zhiyuan Zhao & Hanlin Wang & Yunqi Liu & Yunlong Guo, 2024. "A detachable interface for stable low-voltage stretchable transistor arrays and high-resolution X-ray imaging," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    7. Won Bae Han & Gwan-Jin Ko & Kang-Gon Lee & Donghak Kim & Joong Hoon Lee & Seung Min Yang & Dong-Je Kim & Jeong-Woong Shin & Tae-Min Jang & Sungkeun Han & Honglei Zhou & Heeseok Kang & Jun Hyeon Lim & , 2023. "Ultra-stretchable and biodegradable elastomers for soft, transient electronics," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Himchan Oh & Ji-Young Oh & Chan Woo Park & Jae-Eun Pi & Jong-Heon Yang & Chi-Sun Hwang, 2022. "High density integration of stretchable inorganic thin film transistors with excellent performance and reliability," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Hung-Chin Wu & Shayla Nikzad & Chenxin Zhu & Hongping Yan & Yang Li & Weijun Niu & James R. Matthews & Jie Xu & Naoji Matsuhisa & Prajwal Kammardi Arunachala & Reza Rastak & Christian Linder & Yu-Qing, 2023. "Highly stretchable polymer semiconductor thin films with multi-modal energy dissipation and high relative stretchability," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    10. Liqing Ai & Weikang Lin & Chunyan Cao & Pengyu Li & Xuejiao Wang & Dong Lv & Xin Li & Zhengbao Yang & Xi Yao, 2023. "Tough soldering for stretchable electronics by small-molecule modulated interfacial assemblies," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    11. Taemin Kim & Yejee Shin & Kyowon Kang & Kiho Kim & Gwanho Kim & Yunsu Byeon & Hwayeon Kim & Yuyan Gao & Jeong Ryong Lee & Geonhui Son & Taeseong Kim & Yohan Jun & Jihyun Kim & Jinyoung Lee & Seyun Um , 2022. "Ultrathin crystalline-silicon-based strain gauges with deep learning algorithms for silent speech interfaces," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    12. Junhwan Choi & Changhyeon Lee & Chungryeol Lee & Hongkeun Park & Seung Min Lee & Chang-Hyun Kim & Hocheon Yoo & Sung Gap Im, 2022. "Vertically stacked, low-voltage organic ternary logic circuits including nonvolatile floating-gate memory transistors," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    13. Xuesong Yang & Linfeng Lan & Xiuhong Pan & Qi Di & Xiaokong Liu & Liang Li & Panče Naumov & Hongyu Zhang, 2023. "Bioinspired soft robots based on organic polymer-crystal hybrid materials with response to temperature and humidity," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    14. Massimo Mariello & Elisa Scarpa & Luciana Algieri & Francesco Guido & Vincenzo Mariano Mastronardi & Antonio Qualtieri & Massimo De Vittorio, 2020. "Novel Flexible Triboelectric Nanogenerator based on Metallized Porous PDMS and Parylene C," Energies, MDPI, vol. 13(7), pages 1-12, April.
    15. Chaojie Yu & Mingyue Shi & Shaoshuai He & Mengmeng Yao & Hong Sun & Zhiwei Yue & Yuwei Qiu & Baijun Liu & Lei Liang & Zhongming Zhao & Fanglian Yao & Hong Zhang & Junjie Li, 2023. "Chronological adhesive cardiac patch for synchronous mechanophysiological monitoring and electrocoupling therapy," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    16. Jun Kyu Choe & Junsoo Kim & Hyeonseo Song & Joonbum Bae & Jiyun Kim, 2023. "A soft, self-sensing tensile valve for perceptive soft robots," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    17. Siwei Xiang & Long Qin & Xiaofei Wei & Xing Fan & Chunmei Li, 2023. "Fabric-Type Flexible Energy-Storage Devices for Wearable Electronics," Energies, MDPI, vol. 16(10), pages 1-26, May.
    18. Dong-Hu Kim & Zico Alaia Akbar & Yoga Trianzar Malik & Ju-Won Jeon & Sung-Yeon Jang, 2023. "Self-healable polymer complex with a giant ionic thermoelectric effect," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    19. Yangshuang Bian & Kai Liu & Yang Ran & Yi Li & Yuanhong Gao & Zhiyuan Zhao & Mingchao Shao & Yanwei Liu & Junhua Kuang & Zhiheng Zhu & Mingcong Qin & Zhichao Pan & Mingliang Zhu & Chenyu Wang & Hu Che, 2022. "Spatially nanoconfined N-type polymer semiconductors for stretchable ultrasensitive X-ray detection," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    20. Yufei Zhang & Qiuchun Lu & Jiang He & Zhihao Huo & Runhui Zhou & Xun Han & Mengmeng Jia & Caofeng Pan & Zhong Lin Wang & Junyi Zhai, 2023. "Localizing strain via micro-cage structure for stretchable pressure sensor arrays with ultralow spatial crosstalk," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-40191-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.