IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47389-z.html
   My bibliography  Save this article

A silicon photoanode protected with TiO2/stainless steel bilayer stack for solar seawater splitting

Author

Listed:
  • Shixuan Zhao

    (Tianjin University
    Collaborative Innovation Center of Chemical Science and Engineering (Tianjin))

  • Bin Liu

    (Tianjin University
    Collaborative Innovation Center of Chemical Science and Engineering (Tianjin))

  • Kailang Li

    (Tianjin University
    Collaborative Innovation Center of Chemical Science and Engineering (Tianjin))

  • Shujie Wang

    (Tianjin University
    Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
    International Campus of Tianjin University)

  • Gong Zhang

    (Tianjin University
    Collaborative Innovation Center of Chemical Science and Engineering (Tianjin))

  • Zhi-Jian Zhao

    (Tianjin University
    Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
    Haihe Laboratory of Sustainable Chemical Transformations
    National Industry-Education Platform of Energy Storage)

  • Tuo Wang

    (Tianjin University
    Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
    Haihe Laboratory of Sustainable Chemical Transformations
    National Industry-Education Platform of Energy Storage)

  • Jinlong Gong

    (Tianjin University
    Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
    International Campus of Tianjin University
    Haihe Laboratory of Sustainable Chemical Transformations)

Abstract

Photoelectrochemical seawater splitting is a promising route for direct utilization of solar energy and abundant seawater resources for H2 production. However, the complex salinity composition in seawater results in intractable challenges for photoelectrodes. This paper describes the fabrication of a bilayer stack consisting of stainless steel and TiO2 as a cocatalyst and protective layer for Si photoanode. The chromium-incorporated NiFe (oxy)hydroxide converted from stainless steel film serves as a protective cocatalyst for efficient oxygen evolution and retarding the adsorption of corrosive ions from seawater, while the TiO2 is capable of avoiding the plasma damage of the surface layer of Si photoanode during the sputtering of stainless steel catalysts. By implementing this approach, the TiO2 layer effectively shields the vulnerable semiconductor photoelectrode from the harsh plasma sputtering conditions in stainless steel coating, preventing surface damages. Finally, the Si photoanode with the bilayer stack inhibits the adsorption of chloride and realizes 167 h stability in chloride-containing alkaline electrolytes. Furthermore, this photoanode also demonstrates stable performance under alkaline natural seawater for over 50 h with an applied bias photon-to-current efficiency of 2.62%.

Suggested Citation

  • Shixuan Zhao & Bin Liu & Kailang Li & Shujie Wang & Gong Zhang & Zhi-Jian Zhao & Tuo Wang & Jinlong Gong, 2024. "A silicon photoanode protected with TiO2/stainless steel bilayer stack for solar seawater splitting," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47389-z
    DOI: 10.1038/s41467-024-47389-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47389-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47389-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jiaxin Guo & Yao Zheng & Zhenpeng Hu & Caiyan Zheng & Jing Mao & Kun Du & Mietek Jaroniec & Shi-Zhang Qiao & Tao Ling, 2023. "Direct seawater electrolysis by adjusting the local reaction environment of a catalyst," Nature Energy, Nature, vol. 8(3), pages 264-272, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sixie Zhang & Yunan Wang & Shuyu Li & Zhongfeng Wang & Haocheng Chen & Li Yi & Xu Chen & Qihao Yang & Wenwen Xu & Aiying Wang & Zhiyi Lu, 2023. "Concerning the stability of seawater electrolysis: a corrosion mechanism study of halide on Ni-based anode," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Xin Kang & Fengning Yang & Zhiyuan Zhang & Heming Liu & Shiyu Ge & Shuqi Hu & Shaohai Li & Yuting Luo & Qiangmin Yu & Zhibo Liu & Qiang Wang & Wencai Ren & Chenghua Sun & Hui-Ming Cheng & Bilu Liu, 2023. "A corrosion-resistant RuMoNi catalyst for efficient and long-lasting seawater oxidation and anion exchange membrane electrolyzer," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Jie Liang & Zhengwei Cai & Zixiao Li & Yongchao Yao & Yongsong Luo & Shengjun Sun & Dongdong Zheng & Qian Liu & Xuping Sun & Bo Tang, 2024. "Efficient bubble/precipitate traffic enables stable seawater reduction electrocatalysis at industrial-level current densities," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Mengjun Xiao & Qianbao Wu & Ruiqi Ku & Liujiang Zhou & Chang Long & Junwu Liang & Andraž Mavrič & Lei Li & Jing Zhu & Matjaz Valant & Jiong Li & Zhenhua Zeng & Chunhua Cui, 2023. "Self-adaptive amorphous CoOxCly electrocatalyst for sustainable chlorine evolution in acidic brine," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Shujiao Yang & Kaihang Yue & Xiaohan Liu & Sisi Li & Haoquan Zheng & Ya Yan & Rui Cao & Wei Zhang, 2024. "Electrocatalytic water oxidation with manganese phosphates," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Ling Zhou & Daying Guo & Lianhui Wu & Zhixi Guan & Chao Zou & Huile Jin & Guoyong Fang & Xi’an Chen & Shun Wang, 2024. "A restricted dynamic surface self-reconstruction toward high-performance of direct seawater oxidation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Fei Lv & Jiazhe Wu & Xuan Liu & Zhihao Zheng & Lixia Pan & Xuewen Zheng & Liejin Guo & Yubin Chen, 2024. "Decoupled electrolysis for hydrogen production and hydrazine oxidation via high-capacity and stable pre-protonated vanadium hexacyanoferrate," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47389-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.