IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47055-4.html
   My bibliography  Save this article

A lineage-resolved cartography of microRNA promoter activity in C. elegans empowers multidimensional developmental analysis

Author

Listed:
  • Weina Xu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Jinyi Liu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Huan Qi

    (Chinese Academy of Sciences)

  • Ruolin Si

    (Capital Normal University)

  • Zhiguang Zhao

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Zhiju Tao

    (Capital Normal University)

  • Yuchuan Bai

    (Capital Normal University)

  • Shipeng Hu

    (Capital Normal University)

  • Xiaohan Sun

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Yulin Cong

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Haoye Zhang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Duchangjiang Fan

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Long Xiao

    (Chinese Academy of Sciences)

  • Yangyang Wang

    (Chinese Academy of Sciences)

  • Yongbin Li

    (Capital Normal University)

  • Zhuo Du

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

Abstract

Elucidating the expression of microRNAs in developing single cells is critical for functional discovery. Here, we construct scCAMERA (single-cell cartography of microRNA expression based on reporter assay), utilizing promoter-driven fluorescent reporters in conjunction with imaging and lineage tracing. The cartography delineates the transcriptional activity of 54 conserved microRNAs in lineage-resolved single cells throughout C. elegans embryogenesis. The combinatorial expression of microRNAs partitions cells into fine clusters reflecting their function and anatomy. Notably, the expression of individual microRNAs exhibits high cell specificity and divergence among family members. Guided by cellular expression patterns, we identify developmental functions of specific microRNAs, including miR-1 in pharynx development and physiology, miR-232 in excretory canal morphogenesis by repressing NHR-25/NR5A, and a functional synergy between miR-232 and miR-234 in canal development, demonstrating the broad utility of scCAMERA. Furthermore, integrative analysis reveals that tissue-specific fate determinants activate microRNAs to repress protein production from leaky transcripts associated with alternative, especially neuronal, fates, thereby enhancing the fidelity of developmental fate differentiation. Collectively, our study offers rich opportunities for multidimensional expression-informed analysis of microRNA biology in metazoans.

Suggested Citation

  • Weina Xu & Jinyi Liu & Huan Qi & Ruolin Si & Zhiguang Zhao & Zhiju Tao & Yuchuan Bai & Shipeng Hu & Xiaohan Sun & Yulin Cong & Haoye Zhang & Duchangjiang Fan & Long Xiao & Yangyang Wang & Yongbin Li &, 2024. "A lineage-resolved cartography of microRNA promoter activity in C. elegans empowers multidimensional developmental analysis," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47055-4
    DOI: 10.1038/s41467-024-47055-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47055-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47055-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Molly B. Reilly & Cyril Cros & Erdem Varol & Eviatar Yemini & Oliver Hobert, 2020. "Unique homeobox codes delineate all the neuron classes of C. elegans," Nature, Nature, vol. 584(7822), pages 595-601, August.
    2. Hidefumi Kasuga & Masamitsu Fukuyama & Aya Kitazawa & Kenji Kontani & Toshiaki Katada, 2013. "The microRNA miR-235 couples blast-cell quiescence to the nutritional state," Nature, Nature, vol. 497(7450), pages 503-506, May.
    3. Lee P. Lim & Nelson C. Lau & Philip Garrett-Engele & Andrew Grimson & Janell M. Schelter & John Castle & David P. Bartel & Peter S. Linsley & Jason M. Johnson, 2005. "Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs," Nature, Nature, vol. 433(7027), pages 769-773, February.
    4. Sarah M. Hücker & Tobias Fehlmann & Christian Werno & Kathrin Weidele & Florian Lüke & Anke Schlenska-Lange & Christoph A. Klein & Andreas Keller & Stefan Kirsch, 2021. "Single-cell microRNA sequencing method comparison and application to cell lines and circulating lung tumor cells," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    5. Eran Hornstein & Jennifer H. Mansfield & Soraya Yekta & Jimmy Kuang-Hsien Hu & Brian D. Harfe & Michael T. McManus & Scott Baskerville & David P. Bartel & Clifford J. Tabin, 2005. "The microRNA miR-196 acts upstream of Hoxb8 and Shh in limb development," Nature, Nature, vol. 438(7068), pages 671-674, December.
    6. Calvin H. Jan & Robin C. Friedman & J. Graham Ruby & David P. Bartel, 2011. "Formation, regulation and evolution of Caenorhabditis elegans 3′UTRs," Nature, Nature, vol. 469(7328), pages 97-101, January.
    7. Yifei Zhou & Xueqing Wang & Mengjiao Song & Zhidong He & Guizhong Cui & Guangdun Peng & Christoph Dieterich & Adam Antebi & Naihe Jing & Yidong Shen, 2019. "A secreted microRNA disrupts autophagy in distinct tissues of Caenorhabditis elegans upon ageing," Nature Communications, Nature, vol. 10(1), pages 1-14, December.
    8. Carlos L. Araya & Trupti Kawli & Anshul Kundaje & Lixia Jiang & Beijing Wu & Dionne Vafeados & Robert Terrell & Peter Weissdepp & Louis Gevirtzman & Daniel Mace & Wei Niu & Alan P. Boyle & Dan Xie & L, 2014. "Regulatory analysis of the C. elegans genome with spatiotemporal resolution," Nature, Nature, vol. 512(7515), pages 400-405, August.
    9. Victor Ambros, 2004. "The functions of animal microRNAs," Nature, Nature, vol. 431(7006), pages 350-355, September.
    10. Amanda L. Minogue & Michael R. Tackett & Elnaz Atabakhsh & Genesis Tejada & Swathi Arur, 2018. "Functional genomic analysis identifies miRNA repertoire regulating C. elegans oocyte development," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xueqing Wang & Quanlong Jiang & Hongdao Zhang & Zhidong He & Yuanyuan Song & Yifan Chen & Na Tang & Yifei Zhou & Yiping Li & Adam Antebi & Ligang Wu & Jing-Dong J. Han & Yidong Shen, 2024. "Tissue-specific profiling of age-dependent miRNAomic changes in Caenorhabditis elegans," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. José María Galván-Román & Ángel Lancho-Sánchez & Sergio Luquero-Bueno & Lorena Vega-Piris & Jose Curbelo & Marcos Manzaneque-Pradales & Manuel Gómez & Hortensia de la Fuente & Mara Ortega-Gómez & Javi, 2020. "Usefulness of circulating microRNAs miR-146a and miR-16-5p as prognostic biomarkers in community-acquired pneumonia," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-13, October.
    3. Kshitij Srivastava & Anvesha Srivastava, 2012. "Comprehensive Review of Genetic Association Studies and Meta-Analyses on miRNA Polymorphisms and Cancer Risk," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-1, November.
    4. Yanyan Wang & Yujie Zhang & Chi Pan & Feixia Ma & Suzhan Zhang, 2015. "Prediction of Poor Prognosis in Breast Cancer Patients Based on MicroRNA-21 Expression: A Meta-Analysis," PLOS ONE, Public Library of Science, vol. 10(2), pages 1-13, February.
    5. Christopher P. Arnold & Analí Migueles Lozano & Frederick G. Mann & Stephanie H. Nowotarski & Julianna O. Haug & Jeffrey J. Lange & Chris W. Seidel & Alejandro Sánchez Alvarado, 2021. "Hox genes regulate asexual reproductive behavior and tissue segmentation in adult animals," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    6. Charlotte Glinge & Sebastian Clauss & Kim Boddum & Reza Jabbari & Javad Jabbari & Bjarke Risgaard & Philipp Tomsits & Bianca Hildebrand & Stefan Kääb & Reza Wakili & Thomas Jespersen & Jacob Tfelt-Han, 2017. "Stability of Circulating Blood-Based MicroRNAs – Pre-Analytic Methodological Considerations," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-16, February.
    7. Hossain Ahmed & Beyene Joseph, 2013. "Estimation of weighted log partial area under the ROC curve and its application to MicroRNA expression data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 12(6), pages 743-755, December.
    8. Zhide Fang & Ruofei Du & Andrea Edwards & Erik K Flemington & Kun Zhang, 2013. "The Sequence Structures of Human MicroRNA Molecules and Their Implications," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-9, January.
    9. Hai Lian & Lei Wang & Jingmin Zhang, 2012. "Increased Risk of Breast Cancer Associated with CC Genotype of Has-miR-146a Rs2910164 Polymorphism in Europeans," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-7, February.
    10. Le Thi Truc Linh, 2018. "The Microrna 29 family and its regulation," HO CHI MINH CITY OPEN UNIVERSITY JOURNAL OF SCIENCE - ENGINEERING AND TECHNOLOGY, HO CHI MINH CITY OPEN UNIVERSITY JOURNAL OF SCIENCE, HO CHI MINH CITY OPEN UNIVERSITY, vol. 8(1), pages 18-27.
    11. Seyedehsadaf Asfa & Halil Ibrahim Toy & Reza Arshinchi Bonab & George P. Chrousos & Athanasia Pavlopoulou & Styliani A. Geronikolou, 2023. "Soft Tissue Ewing Sarcoma Cell Drug Resistance Revisited: A Systems Biology Approach," IJERPH, MDPI, vol. 20(13), pages 1-17, July.
    12. Orso Maria Lucherini & Laura Obici & Manuela Ferracin & Valerio Fulci & Michael F McDermott & Giampaolo Merlini & Isabella Muscari & Flora Magnotti & Laura J Dickie & Mauro Galeazzi & Massimo Negrini , 2013. "First Report of Circulating MicroRNAs in Tumour Necrosis Factor Receptor-Associated Periodic Syndrome (TRAPS)," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-6, September.
    13. Wei Meng & Joseph P McElroy & Stefano Volinia & Jeff Palatini & Sarah Warner & Leona W Ayers & Kamalakannan Palanichamy & Arnab Chakravarti & Tim Lautenschlaeger, 2013. "Comparison of MicroRNA Deep Sequencing of Matched Formalin-Fixed Paraffin-Embedded and Fresh Frozen Cancer Tissues," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-9, May.
    14. Li Li & Yunjian Sheng & Lin Lv & Jian Gao, 2013. "The Association between Two MicroRNA Variants (miR-499, miR-149) and Gastrointestinal Cancer Risk: A Meta-Analysis," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-1, November.
    15. Blanca Elena Castro-Magdonel & Manuela Orjuela & Diana E Alvarez-Suarez & Javier Camacho & Lourdes Cabrera-Muñoz & Stanislaw Sadowinski-Pine & Aurora Medina-Sanson & Citlali Lara-Molina & Daphne Garcí, 2020. "Circulating miRNome detection analysis reveals 537 miRNAS in plasma, 625 in extracellular vesicles and a discriminant plasma signature of 19 miRNAs in children with retinoblastoma from which 14 are al," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-19, April.
    16. Gaotian Zhang & Nicole M. Roberto & Daehan Lee & Steffen R. Hahnel & Erik C. Andersen, 2022. "The impact of species-wide gene expression variation on Caenorhabditis elegans complex traits," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    17. Adam Emmer, 2019. "The careers behind and the impact of solo author articles in Nature and Science," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(2), pages 825-840, August.
    18. Seungjae Lee & Yen-Chung Chen & Austin E. Gillen & J. Matthew Taliaferro & Bart Deplancke & Hongjie Li & Eric C. Lai, 2022. "Diverse cell-specific patterns of alternative polyadenylation in Drosophila," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    19. Wei Li & Jing Wang & Qiu-Dan Chen & Xu Qian & Qi Li & Yu Yin & Zhu-Mei Shi & Lin Wang & Jie Lin & Ling-Zhi Liu & Bing-Hua Jiang, 2013. "Insulin Promotes Glucose Consumption via Regulation of miR-99a/mTOR/PKM2 Pathway," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-8, June.
    20. Junpeng Zhang & Taosheng Xu & Lin Liu & Wu Zhang & Chunwen Zhao & Sijing Li & Jiuyong Li & Nini Rao & Thuc Duy Le, 2020. "LMSM: A modular approach for identifying lncRNA related miRNA sponge modules in breast cancer," PLOS Computational Biology, Public Library of Science, vol. 16(4), pages 1-22, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47055-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.