IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26986-2.html
   My bibliography  Save this article

Hox genes regulate asexual reproductive behavior and tissue segmentation in adult animals

Author

Listed:
  • Christopher P. Arnold

    (Stowers Institute)

  • Analí Migueles Lozano

    (University of Chicago)

  • Frederick G. Mann

    (Stowers Institute)

  • Stephanie H. Nowotarski

    (Stowers Institute)

  • Julianna O. Haug

    (Stowers Institute)

  • Jeffrey J. Lange

    (Stowers Institute)

  • Chris W. Seidel

    (Stowers Institute)

  • Alejandro Sánchez Alvarado

    (Stowers Institute
    HHMI)

Abstract

Hox genes are highly conserved transcription factors renowned for their roles in the segmental patterning of the embryonic anterior-posterior (A/P) axis. We report functions for Hox genes in A/P tissue segmentation and transverse fission behavior underlying asexual reproduction in adult planarian flatworms, Schmidtea mediterranea. Silencing of each of the Hox family members identifies 5 Hox genes required for asexual reproduction. Among these, silencing of hox3 genes results in supernumerary fission segments, while silencing of post2b eliminates segmentation altogether. The opposing roles of hox3 and post2b in segmentation are paralleled in their respective regulation of fission behavior. Silencing of hox3 increases the frequency of fission behavior initiation while silencing of post2b eliminates fission behavior entirely. Furthermore, we identify a network of downstream effector genes mediating Hox gene functions, providing insight into their respective mechanisms of action. In particular, we resolve roles for post2b and effector genes in the functions of the marginal adhesive organ in fission behavior regulation. Collectively, our study establishes adult stage roles for Hox genes in the regulation of tissue segmentation and behavior associated with asexual reproduction.

Suggested Citation

  • Christopher P. Arnold & Analí Migueles Lozano & Frederick G. Mann & Stephanie H. Nowotarski & Julianna O. Haug & Jeffrey J. Lange & Chris W. Seidel & Alejandro Sánchez Alvarado, 2021. "Hox genes regulate asexual reproductive behavior and tissue segmentation in adult animals," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26986-2
    DOI: 10.1038/s41467-021-26986-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26986-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26986-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Molly B. Reilly & Cyril Cros & Erdem Varol & Eviatar Yemini & Oliver Hobert, 2020. "Unique homeobox codes delineate all the neuron classes of C. elegans," Nature, Nature, vol. 584(7822), pages 595-601, August.
    2. Christopher P. Arnold & Blair W. Benham-Pyle & Jeffrey J. Lange & Christopher J. Wood & Alejandro Sánchez Alvarado, 2019. "Wnt and TGFβ coordinate growth and patterning to regulate size-dependent behaviour," Nature, Nature, vol. 572(7771), pages 655-659, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eudald Pascual-Carreras & Marta Marín-Barba & Sergio Castillo-Lara & Pablo Coronel-Córdoba & Marta Silvia Magri & Grant N. Wheeler & Jose Luis Gómez-Skarmeta & Josep F. Abril & Emili Saló & Teresa Ade, 2023. "Wnt/β-catenin signalling is required for pole-specific chromatin remodeling during planarian regeneration," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yongbin Li & Siyu Chen & Weihong Liu & Di Zhao & Yimeng Gao & Shipeng Hu & Hanyu Liu & Yuanyuan Li & Lei Qu & Xiao Liu, 2024. "A full-body transcription factor expression atlas with completely resolved cell identities in C. elegans," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    2. Ruth Styfhals & Grygoriy Zolotarov & Gert Hulselmans & Katina I. Spanier & Suresh Poovathingal & Ali M. Elagoz & Seppe Winter & Astrid Deryckere & Nikolaus Rajewsky & Giovanna Ponte & Graziano Fiorito, 2022. "Cell type diversity in a developing octopus brain," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    3. Weina Xu & Jinyi Liu & Huan Qi & Ruolin Si & Zhiguang Zhao & Zhiju Tao & Yuchuan Bai & Shipeng Hu & Xiaohan Sun & Yulin Cong & Haoye Zhang & Duchangjiang Fan & Long Xiao & Yangyang Wang & Yongbin Li &, 2024. "A lineage-resolved cartography of microRNA promoter activity in C. elegans empowers multidimensional developmental analysis," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    4. Bowen Dempsey & Selvee Sungeelee & Phillip Bokiniec & Zoubida Chettouh & Séverine Diem & Sandra Autran & Evan R. Harrell & James F. A. Poulet & Carmen Birchmeier & Harry Carey & Auguste Genovesio & Si, 2021. "A medullary centre for lapping in mice," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    5. Kellianne D. Alexander & Shankar Ramachandran & Kasturi Biswas & Christopher M. Lambert & Julia Russell & Devyn B. Oliver & William Armstrong & Monika Rettler & Samuel Liu & Maria Doitsidou & Claire B, 2023. "The homeodomain transcriptional regulator DVE-1 directs a program for synapse elimination during circuit remodeling," Nature Communications, Nature, vol. 14(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26986-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.