IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45796-w.html
   My bibliography  Save this article

MYC induces CDK4/6 inhibitors resistance by promoting pRB1 degradation

Author

Listed:
  • Jian Ma

    (The First Affiliated Hospital of Xi’an Jiaotong University
    Ministry of Education
    The First Affiliated Hospital of Xi’an Jiaotong University)

  • Lei Li

    (The First Affiliated Hospital of Xi’an Jiaotong University
    Ministry of Education
    The First Affiliated Hospital of Xi’an Jiaotong University)

  • Bohan Ma

    (The First Affiliated Hospital of Xi’an Jiaotong University
    Ministry of Education
    The First Affiliated Hospital of Xi’an Jiaotong University)

  • Tianjie Liu

    (The First Affiliated Hospital of Xi’an Jiaotong University
    Ministry of Education
    The First Affiliated Hospital of Xi’an Jiaotong University)

  • Zixi Wang

    (The First Affiliated Hospital of Xi’an Jiaotong University
    Ministry of Education
    The First Affiliated Hospital of Xi’an Jiaotong University)

  • Qi Ye

    (The First Affiliated Hospital of Xi’an Jiaotong University
    Ministry of Education
    The First Affiliated Hospital of Xi’an Jiaotong University)

  • Yunhua Peng

    (Xi’an Jiaotong University)

  • Bin Wang

    (The First Affiliated Hospital of Xi’an Jiaotong University
    Ministry of Education
    The First Affiliated Hospital of Xi’an Jiaotong University)

  • Yule Chen

    (The First Affiliated Hospital of Xi’an Jiaotong University
    Ministry of Education
    The First Affiliated Hospital of Xi’an Jiaotong University)

  • Shan Xu

    (The First Affiliated Hospital of Xi’an Jiaotong University
    Ministry of Education
    The First Affiliated Hospital of Xi’an Jiaotong University)

  • Ke Wang

    (The First Affiliated Hospital of Xi’an Jiaotong University
    Ministry of Education
    The First Affiliated Hospital of Xi’an Jiaotong University)

  • Fabin Dang

    (Harvard Medical School)

  • Xinyang Wang

    (The First Affiliated Hospital of Xi’an Jiaotong University
    Ministry of Education
    The First Affiliated Hospital of Xi’an Jiaotong University)

  • Zixuan Zeng

    (The First Affiliated Hospital of Xi’an Jiaotong University
    Ministry of Education
    The First Affiliated Hospital of Xi’an Jiaotong University)

  • Yanlin Jian

    (The First Affiliated Hospital of Xi’an Jiaotong University
    Ministry of Education
    The First Affiliated Hospital of Xi’an Jiaotong University)

  • Zhihua Ren

    (Kintor Parmaceutical, Inc)

  • Yizeng Fan

    (The First Affiliated Hospital of Xi’an Jiaotong University
    Ministry of Education
    The First Affiliated Hospital of Xi’an Jiaotong University)

  • Xudong Li

    (The First Affiliated Hospital of Xi’an Jiaotong University
    Ministry of Education
    The First Affiliated Hospital of Xi’an Jiaotong University)

  • Jing Liu

    (The First Affiliated Hospital of Xi’an Jiaotong University
    Ministry of Education
    The First Affiliated Hospital of Xi’an Jiaotong University)

  • Yang Gao

    (The First Affiliated Hospital of Xi’an Jiaotong University
    Ministry of Education
    The First Affiliated Hospital of Xi’an Jiaotong University)

  • Wenyi Wei

    (Harvard Medical School)

  • Lei Li

    (The First Affiliated Hospital of Xi’an Jiaotong University
    Ministry of Education
    The First Affiliated Hospital of Xi’an Jiaotong University)

Abstract

CDK4/6 inhibitors (CDK4/6i) show anticancer activity in certain human malignancies, such as breast cancer. However, their application to other tumor types and intrinsic resistance mechanisms are still unclear. Here, we demonstrate that MYC amplification confers resistance to CDK4/6i in bladder, prostate and breast cancer cells. Mechanistically, MYC binds to the promoter of the E3 ubiquitin ligase KLHL42 and enhances its transcription, leading to RB1 deficiency by inducing both phosphorylated and total pRB1 ubiquitination and degradation. We identify a compound that degrades MYC, A80.2HCl, which induces MYC degradation at nanomolar concentrations, restores pRB1 protein levels and re-establish sensitivity of MYC high-expressing cancer cells to CDK4/6i. The combination of CDK4/6i and A80.2HCl result in marked regression in tumor growth in vivo. Altogether, these results reveal the molecular mechanisms underlying MYC-induced resistance to CDK4/6i and suggest the utilization of the MYC degrading molecule A80.2HCl to potentiate the therapeutic efficacy of CDK4/6i.

Suggested Citation

  • Jian Ma & Lei Li & Bohan Ma & Tianjie Liu & Zixi Wang & Qi Ye & Yunhua Peng & Bin Wang & Yule Chen & Shan Xu & Ke Wang & Fabin Dang & Xinyang Wang & Zixuan Zeng & Yanlin Jian & Zhihua Ren & Yizeng Fan, 2024. "MYC induces CDK4/6 inhibitors resistance by promoting pRB1 degradation," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45796-w
    DOI: 10.1038/s41467-024-45796-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45796-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45796-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Florian L. Muller & Simona Colla & Elisa Aquilanti & Veronica E. Manzo & Giannicola Genovese & Jaclyn Lee & Daniel Eisenson & Rujuta Narurkar & Pingna Deng & Luigi Nezi & Michelle A. Lee & Baoli Hu & , 2012. "Passenger deletions generate therapeutic vulnerabilities in cancer," Nature, Nature, vol. 488(7411), pages 337-342, August.
    2. Di Zhao & Xin Lu & Guocan Wang & Zhengdao Lan & Wenting Liao & Jun Li & Xin Liang & Jasper Robin Chen & Sagar Shah & Xiaoying Shang & Ming Tang & Pingna Deng & Prasenjit Dey & Deepavali Chakravarti & , 2017. "Synthetic essentiality of chromatin remodelling factor CHD1 in PTEN-deficient cancer," Nature, Nature, vol. 542(7642), pages 484-488, February.
    3. François Bertucci & Charlotte K. Y. Ng & Anne Patsouris & Nathalie Droin & Salvatore Piscuoglio & Nadine Carbuccia & Jean Charles Soria & Alicia Tran Dien & Yahia Adnani & Maud Kamal & Séverine Garnie, 2019. "Genomic characterization of metastatic breast cancers," Nature, Nature, vol. 569(7757), pages 560-564, May.
    4. François Bertucci & Charlotte K. Y. Ng & Anne Patsouris & Nathalie Droin & Salvatore Piscuoglio & Nadine Carbuccia & Jean Charles Soria & Alicia Tran Dien & Yahia Adnani & Maud Kamal & Séverine Garnie, 2019. "Author Correction: Genomic characterization of metastatic breast cancers," Nature, Nature, vol. 572(7767), pages 7-7, August.
    5. Kathryn A. O'Donnell & Erik A. Wentzel & Karen I. Zeller & Chi V. Dang & Joshua T. Mendell, 2005. "c-Myc-regulated microRNAs modulate E2F1 expression," Nature, Nature, vol. 435(7043), pages 839-843, June.
    6. Eric S. Fischer & Kerstin Böhm & John R. Lydeard & Haidi Yang & Michael B. Stadler & Simone Cavadini & Jane Nagel & Fabrizio Serluca & Vincent Acker & Gondichatnahalli M. Lingaraju & Ritesh B. Tichkul, 2014. "Structure of the DDB1–CRBN E3 ubiquitin ligase in complex with thalidomide," Nature, Nature, vol. 512(7512), pages 49-53, August.
    7. Mary E. Matyskiela & Gang Lu & Takumi Ito & Barbra Pagarigan & Chin-Chun Lu & Karen Miller & Wei Fang & Nai-Yu Wang & Derek Nguyen & Jack Houston & Gilles Carmel & Tam Tran & Mariko Riley & Lyn’Al Nos, 2016. "A novel cereblon modulator recruits GSPT1 to the CRL4CRBN ubiquitin ligase," Nature, Nature, vol. 535(7611), pages 252-257, July.
    8. Fabin Dang & Li Nie & Jin Zhou & Kouhei Shimizu & Chen Chu & Zhong Wu & Anne Fassl & Shizhong Ke & Yuangao Wang & Jinfang Zhang & Tao Zhang & Zhenbo Tu & Hiroyuki Inuzuka & Piotr Sicinski & Adam J. Ba, 2021. "Inhibition of CK1ε potentiates the therapeutic efficacy of CDK4/6 inhibitor in breast cancer," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    9. Shom Goel & Molly J. DeCristo & April C. Watt & Haley BrinJones & Jaclyn Sceneay & Ben B. Li & Naveed Khan & Jessalyn M. Ubellacker & Shaozhen Xie & Otto Metzger-Filho & Jeremy Hoog & Matthew J. Ellis, 2017. "CDK4/6 inhibition triggers anti-tumour immunity," Nature, Nature, vol. 548(7668), pages 471-475, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aditya Bardia & Sarat Chandarlapaty & Hannah M. Linden & Gary A. Ulaner & Alice Gosselin & Sylvaine Cartot-Cotton & Patrick Cohen & Séverine Doroumian & Gautier Paux & Marina Celanovic & Vasiliki Pele, 2022. "AMEERA-1 phase 1/2 study of amcenestrant, SAR439859, in postmenopausal women with ER-positive/HER2-negative advanced breast cancer," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Jianjie Li & Xiaodong Shu & Jun Xu & Sek Man Su & Un In Chan & Lihua Mo & Jianlin Liu & Xin Zhang & Ragini Adhav & Qiang Chen & Yuqing Wang & Tingting An & Xu Zhang & Xueying Lyu & Xiaoling Li & Josh , 2022. "S100A9-CXCL12 activation in BRCA1-mutant breast cancer promotes an immunosuppressive microenvironment associated with resistance to immunotherapy," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    3. Satoshi Yamanaka & Hirotake Furihata & Yuta Yanagihara & Akihito Taya & Takato Nagasaka & Mai Usui & Koya Nagaoka & Yuki Shoya & Kohei Nishino & Shuhei Yoshida & Hidetaka Kosako & Masaru Tanokura & Ta, 2023. "Lenalidomide derivatives and proteolysis-targeting chimeras for controlling neosubstrate degradation," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    4. Yael Aylon & Noa Furth & Giuseppe Mallel & Gilgi Friedlander & Nishanth Belugali Nataraj & Meng Dong & Ori Hassin & Rawan Zoabi & Benjamin Cohen & Vanessa Drendel & Tomer Meir Salame & Saptaparna Mukh, 2022. "Breast cancer plasticity is restricted by a LATS1-NCOR1 repressive axis," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    5. S. Mouron & M. J. Bueno & A. Lluch & L. Manso & I. Calvo & J. Cortes & J. A. Garcia-Saenz & M. Gil-Gil & N. Martinez-Janez & J. V. Apala & E. Caleiras & Pilar Ximénez-Embún & J. Muñoz & L. Gonzalez-Co, 2022. "Phosphoproteomic analysis of neoadjuvant breast cancer suggests that increased sensitivity to paclitaxel is driven by CDK4 and filamin A," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    6. Antonio Rodriguez-Calero & John Gallon & Dilara Akhoundova & Sina Maletti & Alison Ferguson & Joanna Cyrta & Ursula Amstutz & Andrea Garofoli & Viola Paradiso & Scott A. Tomlins & Ekkehard Hewer & Ver, 2022. "Alterations in homologous recombination repair genes in prostate cancer brain metastases," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Shiyun Cao & Shoukai Kang & Haibin Mao & Jiayu Yao & Liangcai Gu & Ning Zheng, 2022. "Defining molecular glues with a dual-nanobody cannabidiol sensor," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    8. Jorge Gómez Tejeda Zañudo & Romualdo Barroso-Sousa & Esha Jain & Qingchun Jin & Tianyu Li & Jorge E. Buendia-Buendia & Alyssa Pereslete & Daniel L. Abravanel & Arlindo R. Ferreira & Eileen Wrabel & Ka, 2024. "Exemestane plus everolimus and palbociclib in metastatic breast cancer: clinical response and genomic/transcriptomic determinants of resistance in a phase I/II trial," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    9. Jingjie Yi & Omid Tavana & Huan Li & Donglai Wang & Richard J. Baer & Wei Gu, 2023. "Targeting USP2 regulation of VPRBP-mediated degradation of p53 and PD-L1 for cancer therapy," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    10. Sarath Ramachandran & Nikolai Makukhin & Kevin Haubrich & Manjula Nagala & Beth Forrester & Dylan M. Lynch & Ryan Casement & Andrea Testa & Elvira Bruno & Rosaria Gitto & Alessio Ciulli, 2023. "Structure-based design of a phosphotyrosine-masked covalent ligand targeting the E3 ligase SOCS2," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    11. Dae Joong Kim & Swetha Anandh & Jamie L. Null & Piotr Przanowski & Sanchita Bhatnagar & Pankaj Kumar & Sarah E. Shelton & Erin E. Grundy & Katherine B. Chiappinelli & Roger D. Kamm & David A. Barbie &, 2023. "Priming a vascular-selective cytokine response permits CD8+ T-cell entry into tumors," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    12. Shunli Fu & Lili Chang & Shujun Liu & Tong Gao & Xiao Sang & Zipeng Zhang & Weiwei Mu & Xiaoqing Liu & Shuang Liang & Han Yang & Huizhen Yang & Qingping Ma & Yongjun Liu & Na Zhang, 2023. "Temperature sensitive liposome based cancer nanomedicine enables tumour lymph node immune microenvironment remodelling," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    13. Josh N. Vo & Yi-Mi Wu & Jeanmarie Mishler & Sarah Hall & Rahul Mannan & Lisha Wang & Yu Ning & Jin Zhou & Alexander C. Hopkins & James C. Estill & Wallace K. B. Chan & Jennifer Yesil & Xuhong Cao & Ar, 2022. "The genetic heterogeneity and drug resistance mechanisms of relapsed refractory multiple myeloma," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    14. Lingzhi Hong & Muhammad Aminu & Shenduo Li & Xuetao Lu & Milena Petranovic & Maliazurina B. Saad & Pingjun Chen & Kang Qin & Susan Varghese & Waree Rinsurongkawong & Vadeerat Rinsurongkawong & Amy Spe, 2023. "Efficacy and clinicogenomic correlates of response to immune checkpoint inhibitors alone or with chemotherapy in non-small cell lung cancer," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    15. Yuen Lam Dora Ng & Evelyn Ramberger & Stephan R. Bohl & Anna Dolnik & Christian Steinebach & Theresia Conrad & Sina Müller & Oliver Popp & Miriam Kull & Mohamed Haji & Michael Gütschow & Hartmut Döhne, 2022. "Proteomic profiling reveals CDK6 upregulation as a targetable resistance mechanism for lenalidomide in multiple myeloma," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    16. Gisele Nishiguchi & Lauren G. Mascibroda & Sarah M. Young & Elizabeth A. Caine & Sherif Abdelhamed & Jeffrey J. Kooijman & Darcie J. Miller & Sourav Das & Kevin McGowan & Anand Mayasundari & Zhe Shi &, 2024. "Selective CK1α degraders exert antiproliferative activity against a broad range of human cancer cell lines," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    17. Roberta Piras & Emily Y. Ko & Connor Barrett & Marco Simone & Xianzhi Lin & Marina T. Broz & Fernando H. G. Tessaro & Mireia Castillo-Martin & Carlos Cordon-Cardo & Helen S. Goodridge & Dolores Vizio , 2022. "circCsnk1g3- and circAnkib1-regulated interferon responses in sarcoma promote tumorigenesis by shaping the immune microenvironment," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    18. Zefeng Wang & Shabnam Shaabani & Xiang Gao & Yuen Lam Dora Ng & Valeriia Sapozhnikova & Philipp Mertins & Jan Krönke & Alexander Dömling, 2023. "Direct-to-biology, automated, nano-scale synthesis, and phenotypic screening-enabled E3 ligase modulator discovery," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    19. Tanaz Sharifnia & Mathias J. Wawer & Amy Goodale & Yenarae Lee & Mariya Kazachkova & Joshua M. Dempster & Sandrine Muller & Joan Levy & Daniel M. Freed & Josh Sommer & Jérémie Kalfon & Francisca Vazqu, 2023. "Mapping the landscape of genetic dependencies in chordoma," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    20. Qiwei Wang & Johann S. Bergholz & Liya Ding & Ziying Lin & Sheheryar K. Kabraji & Melissa E. Hughes & Xiadi He & Shaozhen Xie & Tao Jiang & Weihua Wang & Jason J. Zoeller & Hye-Jung Kim & Thomas M. Ro, 2022. "STING agonism reprograms tumor-associated macrophages and overcomes resistance to PARP inhibition in BRCA1-deficient models of breast cancer," Nature Communications, Nature, vol. 13(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45796-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.