IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41894-3.html
   My bibliography  Save this article

Structure-based design of a phosphotyrosine-masked covalent ligand targeting the E3 ligase SOCS2

Author

Listed:
  • Sarath Ramachandran

    (University of Dundee)

  • Nikolai Makukhin

    (University of Dundee
    Amphista Therapeutics Ltd, Cory Building, Granta Park, Great Abington)

  • Kevin Haubrich

    (University of Dundee)

  • Manjula Nagala

    (University of Dundee)

  • Beth Forrester

    (University of Dundee)

  • Dylan M. Lynch

    (University of Dundee)

  • Ryan Casement

    (University of Dundee)

  • Andrea Testa

    (University of Dundee
    Amphista Therapeutics Ltd, Cory Building, Granta Park, Great Abington)

  • Elvira Bruno

    (University of Dundee)

  • Rosaria Gitto

    (University of Messina)

  • Alessio Ciulli

    (University of Dundee)

Abstract

The Src homology 2 (SH2) domain recognizes phosphotyrosine (pY) post translational modifications in partner proteins to trigger downstream signaling. Drug discovery efforts targeting the SH2 domains have long been stymied by the poor drug-like properties of phosphate and its mimetics. Here, we use structure-based design to target the SH2 domain of the E3 ligase suppressor of cytokine signaling 2 (SOCS2). Starting from the highly ligand-efficient pY amino acid, a fragment growing approach reveals covalent modification of Cys111 in a co-crystal structure, which we leverage to rationally design a cysteine-directed electrophilic covalent inhibitor MN551. We report the prodrug MN714 containing a pivaloyloxymethyl (POM) protecting group and evidence its cell permeability and capping group unmasking using cellular target engagement and in-cell 19F NMR spectroscopy. Covalent engagement at Cys111 competitively blocks recruitment of cellular SOCS2 protein to its native substrate. The qualified inhibitors of SOCS2 could find attractive applications as chemical probes to understand the biology of SOCS2 and its CRL5 complex, and as E3 ligase handles in proteolysis targeting chimera (PROTACs) to induce targeted protein degradation.

Suggested Citation

  • Sarath Ramachandran & Nikolai Makukhin & Kevin Haubrich & Manjula Nagala & Beth Forrester & Dylan M. Lynch & Ryan Casement & Andrea Testa & Elvira Bruno & Rosaria Gitto & Alessio Ciulli, 2023. "Structure-based design of a phosphotyrosine-masked covalent ligand targeting the E3 ligase SOCS2," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41894-3
    DOI: 10.1038/s41467-023-41894-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41894-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41894-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Edmond M. Linossi & Kunlun Li & Gianluca Veggiani & Cyrus Tan & Farhad Dehkhoda & Colin Hockings & Dale J. Calleja & Narelle Keating & Rebecca Feltham & Andrew J. Brooks & Shawn S. Li & Sachdev S. Sid, 2021. "Discovery of an exosite on the SOCS2-SH2 domain that enhances SH2 binding to phosphorylated ligands," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    2. Eric S. Fischer & Kerstin Böhm & John R. Lydeard & Haidi Yang & Michael B. Stadler & Simone Cavadini & Jane Nagel & Fabrizio Serluca & Vincent Acker & Gondichatnahalli M. Lingaraju & Ritesh B. Tichkul, 2014. "Structure of the DDB1–CRBN E3 ubiquitin ligase in complex with thalidomide," Nature, Nature, vol. 512(7512), pages 49-53, August.
    3. Wei-Wei Kung & Sarath Ramachandran & Nikolai Makukhin & Elvira Bruno & Alessio Ciulli, 2019. "Structural insights into substrate recognition by the SOCS2 E3 ubiquitin ligase," Nature Communications, Nature, vol. 10(1), pages 1-14, December.
    4. Julianty Frost & Carles Galdeano & Pedro Soares & Morgan S. Gadd & Katarzyna M. Grzes & Lucy Ellis & Ola Epemolu & Satoko Shimamura & Marcus Bantscheff & Paola Grandi & Kevin D. Read & Doreen A. Cantr, 2016. "Potent and selective chemical probe of hypoxic signalling downstream of HIF-α hydroxylation via VHL inhibition," Nature Communications, Nature, vol. 7(1), pages 1-12, December.
    5. Donald Metcalf & Christopher J. Greenhalgh & Elizabeth Viney & Tracy A. Willson & Robyn Starr & Nicos A. Nicola & Douglas J. Hilton & Warren S. Alexander, 2000. "Gigantism in mice lacking suppressor of cytokine signalling-2," Nature, Nature, vol. 405(6790), pages 1069-1073, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Edmond M. Linossi & Kunlun Li & Gianluca Veggiani & Cyrus Tan & Farhad Dehkhoda & Colin Hockings & Dale J. Calleja & Narelle Keating & Rebecca Feltham & Andrew J. Brooks & Shawn S. Li & Sachdev S. Sid, 2021. "Discovery of an exosite on the SOCS2-SH2 domain that enhances SH2 binding to phosphorylated ligands," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    2. Josh N. Vo & Yi-Mi Wu & Jeanmarie Mishler & Sarah Hall & Rahul Mannan & Lisha Wang & Yu Ning & Jin Zhou & Alexander C. Hopkins & James C. Estill & Wallace K. B. Chan & Jennifer Yesil & Xuhong Cao & Ar, 2022. "The genetic heterogeneity and drug resistance mechanisms of relapsed refractory multiple myeloma," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Shiyun Cao & Shoukai Kang & Haibin Mao & Jiayu Yao & Liangcai Gu & Ning Zheng, 2022. "Defining molecular glues with a dual-nanobody cannabidiol sensor," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. Fang-Ling Zhang & Zhen Hu & Yi-Fan Wang & Wen-Juan Zhang & Bo-Wei Zhou & Qi-Shun Sun & Ze-Bin Lin & Ke-Xuan Liu, 2023. "Organoids transplantation attenuates intestinal ischemia/reperfusion injury in mice through L-Malic acid-mediated M2 macrophage polarization," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    5. Seref Gul & Yasemin Kubra Akyel & Zeynep Melis Gul & Safak Isin & Onur Ozcan & Tuba Korkmaz & Saba Selvi & Ibrahim Danis & Ozgecan Savlug Ipek & Fatih Aygenli & Ali Cihan Taskin & Büşra Aytül Akarlar , 2022. "Discovery of a small molecule that selectively destabilizes Cryptochrome 1 and enhances life span in p53 knockout mice," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    6. Satoshi Yamanaka & Hirotake Furihata & Yuta Yanagihara & Akihito Taya & Takato Nagasaka & Mai Usui & Koya Nagaoka & Yuki Shoya & Kohei Nishino & Shuhei Yoshida & Hidetaka Kosako & Masaru Tanokura & Ta, 2023. "Lenalidomide derivatives and proteolysis-targeting chimeras for controlling neosubstrate degradation," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    7. Olena S. Tokareva & Kunhua Li & Tara L. Travaline & Ty M. Thomson & Jean-Marie Swiecicki & Mahmoud Moussa & Jessica D. Ramirez & Sean Litchman & Gregory L. Verdine & John H. McGee, 2023. "Recognition and reprogramming of E3 ubiquitin ligase surfaces by α-helical peptides," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    8. Yuen Lam Dora Ng & Evelyn Ramberger & Stephan R. Bohl & Anna Dolnik & Christian Steinebach & Theresia Conrad & Sina Müller & Oliver Popp & Miriam Kull & Mohamed Haji & Michael Gütschow & Hartmut Döhne, 2022. "Proteomic profiling reveals CDK6 upregulation as a targetable resistance mechanism for lenalidomide in multiple myeloma," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    9. Meropi Bagka & Hyeonyi Choi & Margaux Héritier & Hanna Schwaemmle & Quentin T. L. Pasquer & Simon M. G. Braun & Leonardo Scapozza & Yibo Wu & Sascha Hoogendoorn, 2023. "Targeted protein degradation reveals BET bromodomains as the cellular target of Hedgehog pathway inhibitor-1," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    10. Misty Shuo Zhang & Jane Di Cui & Derek Lee & Vincent Wai-Hin Yuen & David Kung-Chun Chiu & Chi Ching Goh & Jacinth Wing-Sum Cheu & Aki Pui-Wah Tse & Macus Hao-Ran Bao & Bowie Po Yee Wong & Carrie Yili, 2022. "Hypoxia-induced macropinocytosis represents a metabolic route for liver cancer," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    11. Jian Ma & Lei Li & Bohan Ma & Tianjie Liu & Zixi Wang & Qi Ye & Yunhua Peng & Bin Wang & Yule Chen & Shan Xu & Ke Wang & Fabin Dang & Xinyang Wang & Zixuan Zeng & Yanlin Jian & Zhihua Ren & Yizeng Fan, 2024. "MYC induces CDK4/6 inhibitors resistance by promoting pRB1 degradation," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41894-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.